

IPA 2018 - Cincinnati (OH)

Dark Matter at the LHC

Giancarlo Panizzo

on behalf of ATLAS and CMS collaborations

INFN di Trieste Gruppo collegato di Udine

DM search paradigm

and colliders

Collider search:

Complete models: SUSY

- Complete models: SUSY
- Assuming simplified models:
 - Mediator: vector/axial vector, scalar/pseudoscalar
 - fermionic dark matter

- Complete models: SUSY
- Assuming simplified models:
 - Mediator: vector/axial vector, scalar/pseudoscalar
 - fermionic dark matter
- Look for
 - $\blacktriangleright \ \ DM \ direct \ \ production \rightarrow \\ transverse \ \ energy \ unbalance$

- Complete models: SUSY
- Assuming simplified models:
 - Mediator: vector/axial vector, scalar/pseudoscalar
 - fermionic dark matter
- Look for
 - $\blacktriangleright \text{ DM direct production} \rightarrow \\ \text{transverse energy unbalance}$
 - ▶ Mediator → "exotic" resonances

- Complete models: SUSY
- Assuming simplified models:
 - Mediator: vector/axial vector, scalar/pseudoscalar
 - fermionic dark matter
- Look for
 - \blacktriangleright DM direct production \rightarrow transverse energy unbalance
 - ▶ Mediator → "exotic" resonances
- Categorized under signatures

- Heavy flavours
- Higgs
- Mono jets, mono *W*, *Z*
- Mono photon
- Others

vector mediator

Event selection

- $E_{\rm T}^{\rm miss}$ + \mathfrak{L} . boosted top +jets
- two same sign ℓ +(*b*-)jets

No excess found. Limits on $\sigma vs m_V/m_\chi/g_q$ (FCNC)

DM with Higgs $h \rightarrow SM$

Different strategies for each *h* decay signature, on top of large E_{T}^{miss} :

DM with Higgs $h \rightarrow SM$

Different strategies for each *h* decay signature, on top of large E_{T}^{miss} :

- $h \rightarrow \gamma \gamma$: fit $m_{\gamma \gamma}$
- $h \rightarrow \tau \tau$: fit m_T^{tot}

DM with Higgs $h \rightarrow SM$

Different strategies for each *h* decay signature, on top of large E_{T}^{miss} :

- $h \rightarrow \gamma \gamma$: fit $m_{\gamma \gamma}$ • $h \rightarrow \tau \tau$: fit m_{τ}^{tot}
- $h
 ightarrow b ar{b}$: fit $m_{jj/b ar{b}/J}$

Good agreement with SM expectations. Limits on $\sigma/m_{Z'}$ vs m_{χ}/m_A

DM with Higgs

 $h \rightarrow SM$ - results

DM with Higgs

$h \rightarrow invisible$

Event selection E_{T}^{miss} + either:

- energetic jets
- ℓ⁺ℓ[−]

DM with Higgs

 $h \rightarrow invisible - results$

Mono jet, mono V

DM produced in association with one

- energetic ISR jet
- Bosons W/Z, decaying hadronically/leptonically

Mono jet, mono V JHEP 01 (2018) 126

- Fit V+jets, tt
 in Control Regions
- Data driven estimation of multijet
- Likelihood fit in CR and SR

Example from ATLAS

Mono jet, mono V results

Mono jet, mono V results

Example Axial Vector exclusions from ATLAS From factor 10 in the luminosity

Good Data/MC agreement (rare processes)

 $\frac{\text{Mono } \gamma}{\text{results}}$

Results consistent with SM predictions. Set limits on mediator mass, m_{χ}

Other indirect searches

Kinematic observables

Kinematic variables sensitive to BSM processes:

$$R^{\text{miss}} = \frac{\sigma_{\text{fid}} \left(p_{\text{T}}^{\text{miss}} + \text{jets} \right)}{\sigma_{\text{fid}} \left(\ell^+ \ell^- + \text{jets} \right)}$$

where SM main contributions are

$$\left(
ho_{\mathsf{T}}^{\mathsf{miss}} + \mathsf{jets}
ight) \simeq Z(o \nu \bar{\nu}) + \mathsf{jets}$$

 $\left(\ell^+ \ell^- + \mathsf{jets}
ight) \simeq Z(o \ell^+ \ell^-) + \mathsf{jets}$

14/28

Kinematic observables

Kinematic variables sensitive to BSM processes:

$$\chi_{\rm dijet} = \frac{1 + \cos \theta^*}{1 - \cos \theta^*}$$

- θ* polar scattering angle in the parton-parton center-of-mass (CM) frame
- BSM can give excess at small χ_{dijet}

Kinematic observables

results

Summary and

comparison to Direct Detection

Example from CMS

Example from CMS

ATLAS

ATLAS

- Large LHC program for Dark Matter searches
- 2015-16 data extended searh reach, first 79.8 $\rm fb^{-1}$ analysis shown
- No DM signals found so far
- Be ready for more results, LHC is still taking data!

References

EXO-16-049	dark matter particles produced in association with a top quark pair	Submitted to PRL
EXO-16-055	dark matter produced in association with a Higgs boson decaying to $\gamma\gamma$ or $\tau^+\tau^-$	Accepted by JHEP
EXO-16-046	new physics in dijet angular distributions using proton- proton collisions and constraints on dark matter and other models	Submitted to EPJC
EXO-16-051	dark matter in events with energetic, hadronically decaying top quarks and missing transverse momentum	JHEP 06 (2018) 027
EXO-16-048	new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance	PRD 97 (2018) 092005
EXO-16-052	new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton-proton collisions	EPJC 78 (2018) 291
EXO-17-001	low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions	JHEP 01 (2018) 097
EXO-16-039	new physics in the monophoton final state in proton-proton collisions	JHEP 10 (2017) 073
EXO-16-005	dark matter produced in association with heavy-flavor quark pairs in proton-proton collisions	EPJC 77 (2017) 845
EXO-16-012	associated production of dark matter with a Higgs boson decaying to $b\bar{b}$ or $\gamma\gamma$	JHEP 10 (2017) 180
HIG-17-023	invisible decays of a Higgs boson produced through vector boson fusion	Submitted to PLB

References

EXOT-2016-37	invisible Higgs boson decays in vector boson fusion	Submitted to PLB
EXOT-2016-16	new phenomena in events with same-charge leptons and <i>b</i> -jets	Submitted to JHEP
EXOT-2016-23	dark matter in events with a hadronically decaying vector boson and missing transverse momentum	Submitted to JHEP
SUSY-2016-16	top-squark pair production in final states with one lepton, jets, and missing transverse momentum	JHEP 06 (2018) 108
EXOT-2016-27	dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum	JHEP 01 (2018) 126
SUSY-2016-18	dark matter produced in association with bottom or top quarks; 0, 2 leptons	EPJC 78 (2018) 18
HIGG-2016-28	invisibly decaying Higgs boson or dark matter candidates produced in association with a ${\sf Z}$ boson	PLB 776 (2017) 318
EXOT-2016-03	Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum	EPJC 77 (2017) 765
AT-C-2018-039	Dark Matter Produced in Association with a Higgs Boson Decaying to $b\bar{b}$ 79.8 fb ⁻¹	ATLAS-CONF-2018-039
HIGG-2016-18	dark matter in association with a Higgs boson decaying to two photons	PRD 96 (2017) 112004
EXOT-2016-32	dark matter in final states containing an energetic photon and large missing transverse momentum	EPJC 77 (2017) 393

Spin dependent

Spin independent

. =

Spin dependent

Spin independent

. =

Spin dependent

Spin independent

· —

Comparison to direct detection

Z'-like model interpretation

Comparison to direct detection

Z'-like model interpretation

Comparison to direct detection

Z'-like model interpretation

Comparison to direct detection

Z'-like model interpretation

Comparison to direct detection

Z'-like model interpretation

LAS

scalar mediator

Event selection

• $b-jets + \{0, 1, 2\} \ell$

Main backgrounds

•
$$t\bar{t}$$
, $V+$ jets

- Tag b-,t- quarks (e.g. "Resolved Top Tagger" for CMS)
- Simultaneous max-likelihood fit of E^{miss} distribution

scalar mediator

Event selection

• $b-jets + \{0, 1, 2\} \ell$

Main backgrounds

•
$$t\overline{t}$$
, $V+$ jets

- Tag b-,t- quarks (e.g. "Resolved Top Tagger" for CMS)
- Simultaneous max-likelihood fit of E_T^{miss} distribution
- Good Data/MC agreement

scalar mediator - results

No excess found. Limits on σ vs $m_{\phi/a}/m_{\chi}$

