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What we have learned from the LHC so far: both direct and indirect 
searches seem to hint at least a factor of 10 (or worse) fine tuning 
in the Higgs potential.  

There is still very active and interesting research aiming to fill 
loopholes of LHC searches or to develop new natural models 
(neutral naturalness, relaxion.…). 

In the talk, I will take a different view point: 
Nature is probably tuned or more precisely “meso-tuned”: 
Higgs is the only light scalar with a little hierarchy and no other 
random light scalars around, e.g., mini-split SUSY scenario (Hall et. 
al; Arkani-Hamed et al.; Arvanitaki et al., … 2012). 

Status of the Higgs Fine-Tuning



Usually, we test the naturalness of the Higgs in two ways: 
1. Look for deviations of the Higgs’s properties from SM 

predictions. 
2. Come up with a concrete natural theory, like SUSY or 

composite Higgs, and look for the new particles it 
predicts. 

These both give evidence for fine-tuning in a negative way, 
that is, we look for deviations and don’t find them. 

In this talk: can we find a positive signal of fine-tuning? In 
particular, a cosmological probe? 

Test fine-tuning



Fine-tuning: if we could change SM parameters, e.g., Higgs mass 
squared parameter, the electroweak physics could be changed 
dramatically. 

Surely the SM parameters are fixed in our Universe. We don’t go
back and forth between different electroweak theories.

Unbroken EWSEWSB



Or can we? Couplings depend on VEVs. 

In the early universe, various weakly-coupled scalar 
fields could have had large field range and the Higgs 
could couple to them. So effective couplings (mass) 
of the Higgs could be different. 

Could have had unbroken electroweak symmetry or much more 
badly broken electroweak symmetry. 

Even better, could have dynamics — oscillations between 
different electroweak phases, fine-tuning in time. 



Well motivated theories supply lots of good candidates 
of scalars with large field range: moduli, saxions, D-flat 
directions, radion… 

Let’s explore what can happen! 

Based on work with Mustafa A. Amin (Rice), Kaloian D. 
Lozano (Max-Planck) and Matt Reece (Harvard), 
1802.00444



Start with Higgs potential today

bare mass quantum correction 
from, e.g., top loop; 
M: natural Higgs mass 
scale

SM Higgs mass2 
~(125 GeV)2
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Fine tuning ~
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In the early Universe, Higgs coupling to a  
modulus (a scalar with a large field range), ɸ 

Same size as they come from the same UV 
physics.  
Easiest to realize in SUSY: M2 ~ soft SUSY 
breaking mass squared

Fine tuning ~
M2

m2
h
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f: field range 
of ɸ



Possible hierarchies: mh << m𝝓 ≲ M << f~ Mpl

(other variations are possible too)

Modulus field range (e.g, ~ Planck scale)

Modulus mass 
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Effective Higgs mass: 

At ɸ0 =           , Higgs mass changes sign! 
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             is a measure of tuning!

Oscillating between no EWSB and EWSB
Initially the modulus is stuck at a random point in the field space (~ f) 
due to Hubble friction. 

The modulus starts oscillating when Hubble is below its mass. For a 
modulus-dominated universe, 

the Higgs will flip between tachyonic and not tachyonic if

                                                                                                                This flipping stops when

The number of EW-flipping oscillations probes fine tuning.

|�(t)| > �0

�(t) ⇡ ⇠�f

m�t
cos(m�(t� t0))

m�t & ⇠�
f

�0

f/�0

⇠� : O(1) number

red-shifted amplitude



Tachyonic particle production
As the modulus oscillates, if m𝝓 is at least a little bit small compared 
to M, the Higgs has time to respond to the change of its potential in 
an oscillation period of the modulus.  

When the Higgs mass flips sign, there is a tachyonic instability:  
  

When                , the Higgs modes grow exponentially.  

That is, there is a tachyonic particle production process when the 
modulus flips to the tachyonic side, converting modulus energy into 
the Higgs energy.  

Tachyonic resonance efficiency parameter: q ⌘ M2

m2
�

� 1

!2
k < 0
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The problem of backreaction
But: once many Higgs particles are created, they backreact and 
fragment the modulus field. 

Simple estimate: the particle production will be stalled once 

Crudely, can think of this as the quartic  

turning into a positive mass for the Higgs. 

Since                   , 

�h4 ⇠ �hh2ih2

h2 ⇠ M2

�

⇢h ⇠ ⇢�

⇢h ⇠ ⇢� ) M4

�
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�f
2

) b ⌘ M4

2�f2m2
�

⇠ 1

back-reaction parameter

b<1, otherwise  
run-away direction



Numerics
Saying what happens after backreaction occurs analytically is 
difficult. Turn to numerical simulations.  

Use a modified version of LatticeEasy (Felder, Tkachev ’00). 

These are classical field theory calculations on a lattice with 
stochastic initial conditions. 
 
They are valid only for a limited range of times. Power transferred 
to small scales eventually invalidates the calculation. 
 
Still, we can learn at least a couple of useful parametric statements 
from the results (which are not in early literature). 

For some parameters, the dynamics is violent, the modulus 
fragments, and we get an interesting interacting phase.

This scenario is similar to “tachyonic preheating”: Dufaux, Felder, 
Kofman, Peloso, Podolsky, hep-ph/0602144.



Results: fragmentation and equation of state

Fragmentation of the modulus due  
to back-reaction is controlled by 
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Fine-tuning=10-6



Fixing b = 0.9, varying q =
M2

m2
�

q controls the particle production efficiency.
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FIG. 3. Left Panel: Evolution of the equation of state of the universe for the Higgs-modulus system for di↵erent values of the
fragmentation e�ciency parameter b ⌘ M4/2�f2m2

� with tuning � = 10�6. An equation of state 1/4 . w . 1/3 is attained
for b ⇠ O[1] after fragmentation (orange curve). Smaller b yields smaller late time equations of state, with continued adiabatic
evolution. In the untuned case (� ⇠ O[1], not shown above) and b 6= 1, we get w ⇡ 0. Right Panel: For fixed b = 0.9, varying
q = M2/m2

� a↵ects when 1/4 . w . 1/3 is attained. For all curves, we have averaged the energy densities and pressures both
spatially over the simulation box and temporally over fast oscillations.

ridge and the valleys: �V = b ⇥ (1/2)m2

�(� � �
0

)2.
From detailed numerical simulations (see § S1), we see

no rapid fragmentation of the modulus field for b ⌧ 1;
energetically, there is not much to be gained by falling
into the valleys. For b ⇠ O[1], the modulus becomes
completely fragmented, i.e. the energy density in the
zero mode of the modulus is comparable to that in high-
momentum modes. We find that for the duration of our
simulations after fragmentation, ⇢h/⇢� ⇠ 1. That is, we
are always left with significant energy density in the spa-
tially inhomogeneous remnant modulus field (see Fig. 2).

We note that for simplicity, we substitute the complex
h field by a real scalar field in the simulations.

B The Equation of State The expansion history
of an FRW universe is controlled by the equation-of-state
parameter w:

w ⌘ hp
tot

i/h⇢
tot

i , (5)

where h. . .i indicates spatial averaging over H�1 scales
and temporal averaging over rapid oscillations in p

tot

(due to oscillating fields). For fixed b, the detailed dy-
namics of the fields and time scale of fragmentation can
depend on the particular values of q and �. For exam-
ple, for b ⇠ O[1], as q increases, the modulus fragments
earlier (see Fig. 3, right panel). However, w shows a sim-
pler behavior as a function of b in the tuned case when
� ⌧ 1:

• For b ⇡ 1, once the fields have fragmented, we get
1/4 . w . 1/3 for the duration of our simulations
(⇠ few e-folds).

• For b . 1, we find a non-trivial (0 < w < 1/3),
adiabatically evolving equation of state.

• For b ⌧ 1, w ! 0. Again, we see some adiabatic
evolution of w here.

To sum up, along with � ⌧ 1 (tuning), we also need
b 6⌧ 1 for significant nonlinear dynamics, fragmentation
and a non-trivial (w 6= 0) equation of state (see Fig. 3).

C Very Long-term Dynamics: Beyond Simula-
tions We can only o↵er qualitative expectations for
the long-term evolution of this highly nonlinear system.
Even with complete fragmentation and an equation of
state w ⇠ 1/3 seen in our simulations, significant energy
density remains in the modulus field. We expect that af-
ter waiting long enough, without additional physics the
universe will again become matter dominated.

Perturbative modulus decays occur on a timescale
��1 ⇠ (m

pl

/m�)2m�1

� � m�1

� , much longer than the

duration of the simulations (t
sim

⇠ few ⇥ 102m�1

� ). En-
ergy could be drained more quickly from the modulus if
the Higgs decays to other light species, freeing up phase
space for further moduli conversion into the Higgs field.
Plausibly, this might significantly reduce the energy den-
sity of the modulus compared to the decay products,
though we have not simulated such dynamics. Never-
theless, it is di�cult to see how matter domination can
be avoided if even a small fraction of the initial energy
density of the modulus survives in low momentum modes.
In general we can allow a long-time averaged, constant
0 < w

mod

< 1/3 to stand in for a range of possible behav-
iors (including the possibility of a nontrivial (w 6= 0, 1/3)
equation of state being maintained via nonlinear mode-
mode couplings [16]).
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FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±p

2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the
remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12m

pl

, f = m
pl

.

S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using

ḧTT
ij + 3HḣTT

ij � r2

a2

hTT
ij =

2

m2

pl

⇧TT
ij (S15)

where hTT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = gFRW

µ⌫ + hµ⌫), and ⇧TT
ij is the

transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = a
g

in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is
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where H
g

is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
th

and g
0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
th

) and today (a
0

), ⌦
r,0 is

the fractional energy density in relativistic species today and w
mod

is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:

k

a
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H
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hTT
ij =
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where hTT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = gFRW

µ⌫ + hµ⌫), and ⇧TT
ij is the

transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = a
g

in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is
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where H
g

is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
th

and g
0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
th

) and today (a
0

), ⌦
r,0 is

the fractional energy density in relativistic species today and w
mod

is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:
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Summary of the numerical results

Backreaction efficiency parameter: 

Tachyonic resonance efficiency parameter: q ⌘ M2/m2
�

b ⇠ 1, q � 1 : w ⇡ 1/3

Efficient conversion of modulus energy into 
Higgs (radiation) 

Fine-tuning << 1, 

b ⌘ M4

2�f2m2
�

< 1
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Gravitational Wave Production
Easther, Lim ’06; Amin, Hertzberg, Kaiser, Karouby ’14

Violent dynamics, like fragmenting the modulus field, produces GW 
background with amplitude

�⇡ : fraction of energy in quadrupoles 
~ O(0.1) in our case

: ratio between GW peak wavenumber and 
Hubble when modulus starts to oscillate 
(~10-1 for q ~ 100;                  )

IF the universe remains radiation dominated after GW production 
until the usual matter-radiation equality

4

where we assume that the universe can be approximated
as radiation dominated shortly after � begins oscillation.
Note that for � ⌧ 1, these frequencies are beyond the
reach of current interferometric detectors (f . 103Hz).

The fraction of energy density in gravitational waves
today (per logarithmic interval in frequency around f0)
can be estimated as [11, 12]

⌦gw(f0) ⇠ ⌦r0�
2
⇡�2, (7)

where ⌦r0 is today’s fraction of energy density stored
in radiation and �⇡ is the fraction of the energy den-
sity in anisotropic stresses at the time of gravitational
wave production. From the scalar field simulations, [MA:
�⇡ ⇠ 0.1 and � ⇠ 0.1 (or estimated from linear in-
stability calculations, and energetic arguments)] which
yield ⌦gw ⇠ 10�9 � 10�10. This result is consistent
with our more detailed lattice simulations which calculate
the gravitational wave spectrum using HLattice [13](see
Fig. ??). Note that detectable ⌦gw(f0 ⇠ 102Hz) & 10�9

for aLIGO at design sensitivity [14].
We can relax the assumption of a radiation-like equa-

tion of state immediately after fragmentation and gener-
alize the above formulae. Assuming that (i) fragmenta-
tion and gravitational wave productions happens quickly
after the modulus domination, (ii) the appropriately av-
eraged equation of state w = wmod for Nmod e-folds af-
ter fragmentation and before final radiation domination
kicks in, we get the following generalization of the above
formulae

f0 ⇠ e�
N

mod

4

(1�3w
mod

)
⇣ m�

103 TeV

⌘1/2
105��1 Hz

⌦gw(f0) ⇠ e�N
mod

(1�3w
mod

)⌦r0�
2
⇡�2 (8)

Note that a more observationally accessible, lower fre-
quency signal using large values of Nmod(1 � 3wmod)
would lead to a significant suppression of ⌦gw, making
detection challenging.

B Constraints from/on Inflationary Observables
Another possible consequence of the non-linear dynamics
is the change of the allowed e-folds during inflation. The
e-folds between the time the current co-moving horizon
scale exited the horizon during inflation and the end of
inflation are related to the e-folds between the end of in-
flation and today in a given expansion history [15]. The
expansion history also allows us to keep track of the evo-
lution of the energy density. Then the ns and r bounds
from CMB measurements constrain an inflationary model
together with its associated evolution afterwards. The
co-moving Hubble scale k = akHk that exits the horizon
during inflation could be written as

k = akHk =
ak

aend

aend

are

are

amod

amod

adec
adecHk, (9)

where aend, are, amod, adec are the scale factors at the end
of inflation, at the end of inflationary reheating, when

the modulus starts to oscillate, and when full decays of
the modulus happen (equivalently when radiation domi-
nates again) respectively. Using this relation and assum-
ing that during inflationary reheating, the constant in
the equation of state doesn’t exceed 1/3, we can obtain
a conservative lower bound on m�,

m2
�

M2
Pl

& exp

"
�6(1 + wmod)

1 � 3wmod

 
57 � Nk + ln

✓
r⇢k
⇢end

◆ 1

4

!#

(10)

where r is the tensor-to-scalar ratio and ⇢k (⇢end) is the
energy density when the mode exits the horizon (at the
end of inflation). For 0 < wmod < 1/3, the bound can
get considerably weaker compared to the wmod = 0 case.
Details of the derivation and more discussions on the im-
plications of this bound can be found in § S2.

V More Realistic Models The simulation estab-
lishes that the relation M4 ⇠ �m2

�f2 is crucial for frag-
mentation. In a gravity-mediated SUSY scenario, we
expect M ⇠ m� ⇠ msoft ⌧ f ⇠ Mpl with msoft the
SUSY breaking soft mass. Modulus fragmentation then
requires a tiny Higgs quartic coupling � ⇠ m2

soft/M
2
Pl, at

first glance conflicting with the known SM Higgs mass.
However, in the SUSY context with two Higgs doublets,
there is a D-flat direction |Hu| ⇡ |Hd| along which the
e↵ective quartic coupling can be tiny. If, as the modu-
lus oscillates, the D-flat direction becomes tachyonic, we
could achieve b ⇠ 1.

Loop corrections lifting the D-flat direction are tiny at

large Higgs VEV, e.g. / log
⇣
1 + m2

soft

y2

t hHi2

⌘
. More impor-

tant corrections originate from higher dimension opera-
tors, for instance a Kähler term

Z
d4✓

X†X

⇤4
(H†

uHu)2 ! m2
soft

⇤2
(H†

uHu)2, (11)

with X a SUSY breaking spurion and ⇤ the cuto↵
(e.g. MPl). Such Kähler corrections produce an e↵ective

Higgs quartic ⇠ m2

soft

⇤2

, consistent with fragmentation e�-
ciency parameter b ⇠ 1. This allows the Higgs to achieve
VEVs of order ⇤ along the flat direction. More details
are in § S4.

Other possible directions include modifying the hierar-
chies between di↵erent energy scales, for instance, having
m� ⌧ M ⌧ f ⇠ Mpl while keeping the Higgs quar-
tic coupling order one. This requires sequestering SUSY
breaking to the modulus compared to the Higgs field. We
will leave more detailed model building to future work.

VI Conclusions and Future Directions If the
physical constants of the SM are determined by the vac-
uum expectation values of some scalar fields, in a tuned
universe, even a small displacement of such a scalar field
from its minimum can dramatically alter electroweak

�

4

a long-time averaged, constant 0 < w
mod

< 1/3 to stand
in for a range of possible behaviors (including the possi-
bility of a nontrivial (w 6= 0, 1/3) equation of state being
maintained via nonlinear mode-mode couplings [15]).

IV Potential Signals and Consequences

A Stochastic Gravitational Waves As we have
seen for b ! 1, the fields in the modulus-Higgs sys-
tem fragment rapidly (for q � 1), thus providing a
source for the production of gravitational radiation [16–
19]. The characteristic physical frequency of gravita-
tional waves at the time of their production is estimated
to be f ⇠ ��1H

osc

, with � ⇠ q�1/2 and H
osc

⇠ m� the
Hubble parameter when the modulus starts oscillating.
The frequency f at that time is then redshifted to today
to obtain (see § S2 for details)

f
0

⇠ a
osc

a
0

��1H
osc

⇠ 105��1 Hz
⇣ m�

105 TeV

⌘
1/2

, (6)

where we assume that the universe can be approximated
as radiation dominated shortly after � begins oscillation.
Note that for � ⌧ 1, these frequencies are beyond the
reach of current interferometric detectors (f . 103Hz).
However, techniques for probing higher frequencies in the
future have been discussed [20–22].

The fraction of energy density in gravitational waves
today (per logarithmic interval in frequency around f

0

)
can be estimated as [23]

⌦
gw,0(f0

) ⇠ ⌦
r,0�

2

⇡�2, (7)

where ⌦
r,0 is today’s fraction of energy density stored

in radiation and �⇡ is the fraction of the energy den-
sity in anisotropic stresses at the time of gravitational
wave production. From the scalar field simulations (or
estimated from linear instability calculations and ener-
getic arguments), �⇡ ⇠ 0.3 and � ⇠ q�1/2 which yield
⌦

gw,0 ⇠ 10�8 for q = 102. This result is consistent
with our more detailed lattice simulations which calculate
the gravitational wave spectrum using HLattice [24] (see
Fig. 4). Note that detectable ⌦

gw,0(f0

⇠ 102Hz) & 10�8

for aLIGO at design sensitivity [25].
We can relax the assumption of a radiation-like equa-

tion of state immediately after fragmentation and gener-
alize the above formulae. Assuming that (i) fragmenta-
tion and gravitational wave production happens quickly
after the modulus domination, (ii) the appropriately av-
eraged equation of state w = w

mod

for N
mod

e-folds af-
ter fragmentation and before final radiation domination
kicks in, we get the following generalization of the above
formulae (see § S2 for details)
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FIG. 4. The dashed orange curve with N
mod

= 0 is the grav-
itational waves (GWs) power spectrum today; it was gener-
ated by the non-linear dynamics at t ⇡ 70m�1

� (we assume

b = 1, q = 102, f = m
pl

). The height and the frequency of
the peak are consistent with our predictions. The GWs on
intermediate frequencies are generated by the slow propaga-
tion of power towards smaller comoving scales after backre-
action, see Fig. S3. The two paler dashed orange curves with
N

mod

> 0 are just a rescaled version of the top one, assuming
w

mod

= 0. The solid black curve is the planned sensitivity of
the fifth observational run, O5, of the aLIGO-AdVirgo detec-
tor collaboration [26].

Note that a more observationally accessible, lower fre-
quency signal using large values of N

mod

(1 � 3w
mod

)
would lead to a significant suppression of ⌦

gw,0, making
detection challenging.

B Constraints from/on Inflationary Observables
Another possible consequence of the non-linear dynam-
ics is to change the allowed e-folds during inflation. The
e-folds between the time the current co-moving horizon
scale exited the horizon during inflation and the end of
inflation are related to the e-folds between the end of in-
flation and today in a given expansion history [27]. The
expansion history also allows us to keep track of the evo-
lution of the energy density. Then the ns and r bounds
from CMB measurements constrain an inflationary model
together with its associated evolution afterwards. The
co-moving Hubble scale k = akHk that exits the horizon
during inflation could be written as

k = akHk =
ak

a
end

a
end

a
re

a
re

a
mod

a
mod

a
dec

a
dec

Hk, (9)

where a
end

, a
re

, a
mod

, a
dec

are the scale factors at the end
of inflation, at the end of inflationary reheating, when
the modulus starts to oscillate, and when full decays of
the modulus happen (equivalently when radiation domi-
nates again) respectively. Using this relation and assum-
ing that during inflationary reheating, the constant in
the equation of state doesn’t exceed 1/3, we can obtain



Gravitational Waves from Moduli fragmentation
These simple estimates yield (𝜷~10-1): 

⌦gw ⇠ ⌦r,0�
2
⇡�

2 ⇠ 10�6�2

This frequency is above the 
LIGO band. Need new 
technologies (Akutsu et. al 
’08; Arvanitaki and Geraci 
’12; Goryachev, Tobar ’14). 

The amplitude isn’t terrible, 
and astrophysical 
backgrounds are low at high 
frequencies.
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IV Potential Signals and Consequences

A Stochastic Gravitational Waves For b 6⌧ 1,
the fields in the modulus-Higgs system fragment rapidly
(for q � 1), thus providing a source for the produc-
tion of gravitational radiation [17–20]. The characteristic
physical frequency of gravitational waves at the time of
their generation is f

g

⇠ ��1H
osc

, with � ⇠ q�1/2 and
H

osc

⇠ m� being the Hubble parameter when the mod-
ulus starts oscillating. Redshifting this frequency f

g

to
today, we obtain (see § S2 for details)
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r
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10 TeV
, (6)

where we assume that the universe can be approximated
as radiation dominated shortly after � begins oscillation.
Note that for � ⌧ 1, these frequencies are beyond the
reach of current interferometric detectors (f

0

. kHz),
though not too far. Techniques for probing higher fre-
quencies in the future have been discussed [21–23].

The fraction of energy density in gravitational waves
today (per logarithmic interval in frequency around f

0

)
can be estimated as [24]

⌦
gw,0(f0
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r,0�

2

⇡�2, (7)

where ⌦
r,0 is today’s fraction of energy density stored

in radiation and �⇡ is the fraction of the energy den-
sity in anisotropic stresses at the time of gravitational
wave production. From the scalar field simulations (or
estimates from linear instability calculations and ener-
getic arguments), �⇡ ⇠ 0.3 and � ⇠ q�1/2 which yield
⌦

gw,0 ⇠ 10�8 for q = 102. This result is consistent
with our more detailed lattice simulations which calculate
the gravitational wave spectrum using HLattice [25] (see
Fig. 4). Note that detectable ⌦

gw,0(f0

⇠ 102Hz) & 10�8

for aLIGO at design sensitivity [26].
We can relax the assumption of a radiation-like equa-

tion of state immediately after fragmentation and gener-
alize the above formulae. Assuming that (i) fragmenta-
tion and gravitational wave production happens quickly
after modulus domination, (ii) the appropriately aver-
aged equation of state w = w

mod

for N
mod

e-folds af-
ter fragmentation and before final radiation domination
kicks in, the above formulae become

f
0

⇠ kHz ⇥ e� N
mod

4

(1�3w
mod

)��1

r
m�

10 TeV
,

⌦
gw,0(f0

) ⇠ e�N
mod

(1�3w
mod

)⌦
r,0�

2

⇡�2 . (8)

Note that a more observationally accessible, lower fre-
quency signal using large values of N

mod

(1 � 3w
mod

)
would lead to a significant suppression of ⌦

gw,0, making
detection challenging.

B Constraints from/on Inflationary Observables
Another possible consequence of the non-linear dynam-
ics is to change the allowed e-folds during inflation. The

FIG. 4. The dashed orange curve with N
mod

= 0 is the grav-
itational waves (GWs) power spectrum today; it was gener-
ated by the non-linear dynamics at t ⇡ 70m�1

� (we assume

� = 10�6, b = 0.9, q = 102, f = m
pl

). The GWs on inter-
mediate frequencies are generated by the slow propagation of
power towards smaller comoving scales after backreaction; see
Fig. S3. The two paler dashed orange curves with N

mod

> 0
are rescaled versions of the top one, assuming w

mod

= 0. The
solid black curve is the planned sensitivity of the fifth obser-
vational run of the aLIGO-AdVirgo collaboration [27].

e-folds between the time the current co-moving horizon
scale exited the horizon during inflation and the end of
inflation are related to the e-folds between the end of in-
flation and today in a given expansion history [28]. The
expansion history also allows us to keep track of the evo-
lution of the energy density. Then the ns and r bounds
from CMB measurements constrain an inflationary model
together with its associated evolution afterwards.

Assuming that during inflationary reheating, w doesn’t
exceed 1/3, we can obtain a conservative lower bound on
m�,

m2

�

m2

pl

& exp

"
�6(1 + w

mod

)

1 � 3w
mod

 
57 � Nk + ln

✓
r⇢k

⇢
end

◆ 1

4

!#

where r is the tensor-to-scalar ratio and ⇢k (⇢
end

) is
the energy density when the mode exits the horizon (at
the end of inflation), and w

mod

is the average equation
of state between the time when the modulus starts os-
cillating and before it fully decays to radiation. For
0 < w

mod

< 1/3, the bound can be considerably weaker
compared to the w

mod

= 0 case. Details of the derivation
and implications of this bound can be found in § S3.

V More Realistic Models The simulation estab-
lishes that the relation M4 ⇠ �m2

�f2 is crucial for frag-
mentation. In a gravity-mediated SUSY scenario, we
expect M ⇠ m� ⇠ m

soft

⌧ f ⇠ m
pl

with m
soft

the
SUSY breaking soft mass. Modulus fragmentation then
requires a tiny Higgs quartic coupling � ⇠ m2

soft

/m2

pl

, at
first glance conflicting with the known SM Higgs mass.

m� = 10TeV
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FIG. 3. Left Panel: Evolution of the equation of state of the universe for the Higgs-modulus system for di↵erent values of the
fragmentation e�ciency parameter b ⌘ M4/2�f2m2

� with tuning � = 10�6. An equation of state 1/4 . w . 1/3 is attained
for b ⇠ O[1] after fragmentation (orange curve). Smaller b yields smaller late time equations of state, with continued adiabatic
evolution. In the untuned case (� ⇠ O[1], not shown above) and b 6= 1, we get w ⇡ 0. Right Panel: For fixed b = 0.9, varying
q = M2/m2

� a↵ects when 1/4 . w . 1/3 is attained. For all curves, we have averaged the energy densities and pressures both
spatially over the simulation box and temporally over fast oscillations.

ridge and the valleys: �V = b ⇥ (1/2)m2

�(� � �
0

)2.
From detailed numerical simulations (see § S1), we see

no rapid fragmentation of the modulus field for b ⌧ 1;
energetically, there is not much to be gained by falling
into the valleys. For b ⇠ O[1], the modulus becomes
completely fragmented, i.e. the energy density in the
zero mode of the modulus is comparable to that in high-
momentum modes. We find that for the duration of our
simulations after fragmentation, ⇢h/⇢� ⇠ 1. That is, we
are always left with significant energy density in the spa-
tially inhomogeneous remnant modulus field (see Fig. 2).

We note that for simplicity, we substitute the complex
h field by a real scalar field in the simulations.

B The Equation of State The expansion history
of an FRW universe is controlled by the equation-of-state
parameter w:

w ⌘ hp
tot

i/h⇢
tot

i , (5)

where h. . .i indicates spatial averaging over H�1 scales
and temporal averaging over rapid oscillations in p

tot

(due to oscillating fields). For fixed b, the detailed dy-
namics of the fields and time scale of fragmentation can
depend on the particular values of q and �. For exam-
ple, for b ⇠ O[1], as q increases, the modulus fragments
earlier (see Fig. 3, right panel). However, w shows a sim-
pler behavior as a function of b in the tuned case when
� ⌧ 1:

• For b ⇡ 1, once the fields have fragmented, we get
1/4 . w . 1/3 for the duration of our simulations
(⇠ few e-folds).

• For b . 1, we find a non-trivial (0 < w < 1/3),
adiabatically evolving equation of state.

• For b ⌧ 1, w ! 0. Again, we see some adiabatic
evolution of w here.

To sum up, along with � ⌧ 1 (tuning), we also need
b 6⌧ 1 for significant nonlinear dynamics, fragmentation
and a non-trivial (w 6= 0) equation of state (see Fig. 3).

C Very Long-term Dynamics: Beyond Simula-
tions We can only o↵er qualitative expectations for
the long-term evolution of this highly nonlinear system.
Even with complete fragmentation and an equation of
state w ⇠ 1/3 seen in our simulations, significant energy
density remains in the modulus field. We expect that af-
ter waiting long enough, without additional physics the
universe will again become matter dominated.

Perturbative modulus decays occur on a timescale
��1 ⇠ (m

pl

/m�)2m�1

� � m�1

� , much longer than the

duration of the simulations (t
sim

⇠ few ⇥ 102m�1

� ). En-
ergy could be drained more quickly from the modulus if
the Higgs decays to other light species, freeing up phase
space for further moduli conversion into the Higgs field.
Plausibly, this might significantly reduce the energy den-
sity of the modulus compared to the decay products,
though we have not simulated such dynamics. Never-
theless, it is di�cult to see how matter domination can
be avoided if even a small fraction of the initial energy
density of the modulus survives in low momentum modes.
In general we can allow a long-time averaged, constant
0 < w

mod

< 1/3 to stand in for a range of possible behav-
iors (including the possibility of a nontrivial (w 6= 0, 1/3)
equation of state being maintained via nonlinear mode-
mode couplings [16]).



Summary

Cosmology could allow us to see the effects of Higgs fine-tuning 
directly. 

Time-dependent VEVs of moduli explore regions where the Higgs 
potential can be very different than in our late-time universe. 

This can lead to a coupled dynamical evolution of the modulus 
and the Higgs, with exotic equation of state w close to 1/3. 

The modulus can fragment and produce gravitational waves. 



In case you doubt the connection to the Higgs, there is still 
something useful I could offer you about particle production 
(widely used in preheating, inflation on a steep potential, new 
mechanisms for axion dark matter and dark photon dark 
matter…) 

Necessary conditions for scalar particle production:  
a) Fine-tuning  
b) M4 ~ λmɸ2 f2 
c) M > mɸ  

General observations for particle production through different 
operators:  
a) Order one energy transfer (except for            with F field 

strength of a massless U(1)) 
b) Reduce self-interaction of the particles produced

aF F̃
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Thank you!



Backup



Higgs 125 GeV

Gauginos O(1) TeV

10s-100 TeVSUSY Scalars, Gravitino, 
Moduli

⇠ ↵/⇡

•  Heavy scalars (10s of TeV) at large tan β: right Higgs mass
•  Loop factor: arises in AMSB (Giudice, Luty, Murayama, Rattazzi; 

Randall, Sundrum) and some moduli mediation
• Preserve gauge coupling unification

An example: mini-split SUSY 
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In our evaluation below, we use ns = 0.9677 ± 0.006 (Planck TT+lowP+lensing) [30]. We also fix c = 1/16⇡. For
↵ = 1, the lower bounds on m� as a function of ns or r are illustrated in Fig. S6. In this case, the central value of ns

gives us Nk ⇡ 46.4, r ⇡ 0.086, ⇢k/⇢
end

⇡ 9. This leads to a conservative lower mass bound of the modulus, m� > 477
TeV when w

mod

= 0 and a much weaker bound when w
mod

increases, e.g., m� > 8 MeV when w
mod

= 0.1. Yet the
potential strong mass bound on the modulus for w

mod

= 0 may not be solid given the current precision of ns. If
we allow for ns to vary in the 1� range, for instance, when ns takes the value at the lower 1� bound, ns = 0.962,
Nk ⇡ 39.2, r ⇡ 0.10, ⇢k/⇢

end

⇡ 8.3. When w
mod

= 0, m� > 0.14 MeV, which is negligible. In the future, if the
precision of ns could be improved by a factor of 2 to 3 with the CMB-S4 measurements [35], we will have a better
assessment of the compatibility of the modulus scenario and di↵erent classes of inflation models.

A more optimistic scenario is that in the near future, we will detect primordial gravitational waves and measure
r. The precision of CMB-S4 measurement of r is projected to be significantly improved to 5 ⇥ 10�4. Assuming a
measured r = 0.085 and CMB-S4’s sensitivity, we could obtain a solid lower bound on m�: m� > 1000 TeV, when
w = 0 as shown in the right panel of Fig. S6. When w is increased to 0.1, the bound is considerably relaxed to be
well below the cosmological moduli bound.

S4 Aspects of the model

1. Fine tuning and duration of non-linear dynamics

In an untuned scenario, e.g., �
0

. f in Eq. 1, at the beginning of the modulus oscillation, there is still a transition
between the unbroken and broken electroweak phases, associated with tachyonic Higgs production. The initial frag-
mentation of the modulus and burst of gravitational waves are thus possible even in theories that are not fine-tuned.
However, as the universe expands, the amplitude of the modulus oscillation quickly reduces. Once |�(t)| < �

0

, the
Higgs potential is always in the broken phase, so we expect that the coupled phase with exotic equation of state turns
o↵ and the system quickly returns to a standard moduli-dominated phase with w ⇡ 0. The bigger �

0

is, the shorter
the duration of the non-linear dynamics. In other words, the number of electroweak-flipping oscillations and hence
the duration of non-linear dynamics is a probe of fine-tuning.

2. Origin of moduli couplings

In this section we will explain the origin of the M2(�/f)h†h ansatz for the modulus coupling to the Higgs, and
some variations that can arise. We first start by supposing that the modulus is a chiral superfield X � X + FX✓2,
with a supersymmetry breaking VEV

hXi = X
0

+ FX,0✓
2, where X

0

⇠ m
pl

, FX,0 ⇠ m
3/2

m
pl

. (S43)

Generic chiral superfields will obtain soft SUSY-breaking mass terms through couplings to X,

Z
d4✓

⇠XZ

m2

pl

X†XZ†Z � ⇠XZ
|FX |2
m2

pl

Z†Z, (S44)

i.e. Z has a soft mass ⇠ m2

3/2

. If X deviates from its vacuum expectation value, then in general this mass term will
also fluctuate. For example, we might suppose that X has a superpotential

W =

Z
d2✓

 
1

2
mXX2 +

1

3!
gX

mX

m
pl

X3 +
1

4!
�X

mX

m2

pl

X4 + . . .

!
, (S45)

where gX , �X ⇠ O(1) and factors of mX/mk�2

pl

have been extracted to ensure that mX acts as an overall spurion for
shift-symmetry breaking. That is to say, it ensures that if X ⇠ m

pl

all terms in the potential are of comparable size.
Now, if X has a canonical Kähler potential

R
d4✓X†X, then we can solve for the ✓2 component FX as:

F †
X =

 
1 � ⇠XZ

m2

pl

Z†Z + . . .

! 
mXX +

1

2
gXmX

X2

m
pl

+
1

3!
�XmX

X3

m2

pl

+ . . .

!
. (S46)
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some variations that can arise. We first start by supposing that the modulus is a chiral superfield X � X + FX✓2,
with a supersymmetry breaking VEV
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Generic chiral superfields will obtain soft SUSY-breaking mass terms through couplings to X,
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i.e. Z has a soft mass ⇠ m2
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. If X deviates from its vacuum expectation value, then in general this mass term will
also fluctuate. For example, we might suppose that X has a superpotential
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where gX , �X ⇠ O(1) and factors of mX/mk�2

pl

have been extracted to ensure that mX acts as an overall spurion for
shift-symmetry breaking. That is to say, it ensures that if X ⇠ m

pl

all terms in the potential are of comparable size.
Now, if X has a canonical Kähler potential
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In our evaluation below, we use ns = 0.9677 ± 0.006 (Planck TT+lowP+lensing) [30]. We also fix c = 1/16⇡. For
↵ = 1, the lower bounds on m� as a function of ns or r are illustrated in Fig. S6. In this case, the central value of ns

gives us Nk ⇡ 46.4, r ⇡ 0.086, ⇢k/⇢
end

⇡ 9. This leads to a conservative lower mass bound of the modulus, m� > 477
TeV when w

mod

= 0 and a much weaker bound when w
mod

increases, e.g., m� > 8 MeV when w
mod

= 0.1. Yet the
potential strong mass bound on the modulus for w

mod

= 0 may not be solid given the current precision of ns. If
we allow for ns to vary in the 1� range, for instance, when ns takes the value at the lower 1� bound, ns = 0.962,
Nk ⇡ 39.2, r ⇡ 0.10, ⇢k/⇢

end

⇡ 8.3. When w
mod

= 0, m� > 0.14 MeV, which is negligible. In the future, if the
precision of ns could be improved by a factor of 2 to 3 with the CMB-S4 measurements [35], we will have a better
assessment of the compatibility of the modulus scenario and di↵erent classes of inflation models.

A more optimistic scenario is that in the near future, we will detect primordial gravitational waves and measure
r. The precision of CMB-S4 measurement of r is projected to be significantly improved to 5 ⇥ 10�4. Assuming a
measured r = 0.085 and CMB-S4’s sensitivity, we could obtain a solid lower bound on m�: m� > 1000 TeV, when
w = 0 as shown in the right panel of Fig. S6. When w is increased to 0.1, the bound is considerably relaxed to be
well below the cosmological moduli bound.

S4 Aspects of the model

1. Fine tuning and duration of non-linear dynamics

In an untuned scenario, e.g., �
0

. f in Eq. 1, at the beginning of the modulus oscillation, there is still a transition
between the unbroken and broken electroweak phases, associated with tachyonic Higgs production. The initial frag-
mentation of the modulus and burst of gravitational waves are thus possible even in theories that are not fine-tuned.
However, as the universe expands, the amplitude of the modulus oscillation quickly reduces. Once |�(t)| < �
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, the
Higgs potential is always in the broken phase, so we expect that the coupled phase with exotic equation of state turns
o↵ and the system quickly returns to a standard moduli-dominated phase with w ⇡ 0. The bigger �
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is, the shorter
the duration of the non-linear dynamics. In other words, the number of electroweak-flipping oscillations and hence
the duration of non-linear dynamics is a probe of fine-tuning.
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From this we see that requiring that X is the dominant source of SUSY breaking leads to m
3/2

⇠ mX . This then
parametrically guarantees that

FX ⇠ m
3/2

m
pl

g(X) (S47)

where g(X) is an order-one function of X/m
pl

. In particular, the term (S44) contains a trilinear coupling:

2⇠XZRe(FX,0mX)
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The prefactor here parametrically has size m2

3/2

/m
pl

. This is the analogue of our toy model, with Z playing the

role of the Higgs boson, Re(X) playing the role of the modulus �, and a prefactor of order M2/f with f ⇠ m
pl

and
M ⇠ m

3/2

. In other words, a typical Planckian field displacement of X from its minimum will lead to an order-1
variation in the soft mass of Z.

We can also read o↵ from this discussion that the |FX |2 term in the Lagrangian contains pieces that behave like
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In other words, we expect that moduli will inevitably generate quartic couplings of our fields with parametric size
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. (S50)

Such F -term quartic couplings can also originate, as mentioned in the main text, from additional Kähler potential

terms like
R

d4✓X†X
⇤

4

(Z†Z)2. They will exist even, for instance, along D-flat directions of fields with gauge charges,
as discussed in more detail below. The value of the quartic will be sensitive to the modulus value, but the parametric
size will not.

In the context of the MSSM, moduli can a↵ect Higgs soft masses by replacing Z†Z with h†
u,dhu,d, or they can

a↵ect holomorphic (bµ-term) masses by coupling to huhd. If the modulus primarily a↵ects the bµ-term rather than
the soft masses, the dynamics can be rather di↵erent from our toy model, as a tachyonic direction exists both for
large positive bµ and for large negative bµ, possibly disappearing in an intermediate region as the modulus oscillates.
It would be interesting to simulate this scenario in future work.

Many theories of moduli have special points in field space where the metric is singular and a tower of particles
becomes light, e.g. in string theory where many moduli fields T have Kähler potentials of the form a log(T + T †).
Our field � should be thought of as expanding around a value of T � 1, far from the singularity in moduli space
at T = 0. The noncanonical Kähler term expanded around the minimum will give rise to terms like 1

m2

pl

�2@µ�@µ�,

which may influence the dynamics. We assume that the field remains far from the singularity at T = 0, so that it
is valid to work in terms of the canonically normalized field �. Nonetheless, as mentioned in §II, the omitted terms
could have important dynamical e↵ects. It would be interesting to include such terms in future simulations.

In general, working with moduli whose imaginary parts have associated shift symmetries, which appear via the
combination T + T †, does not qualitatively change the discussion. In certain sequestered scenarios, couplings may
take a di↵erent form. For example, in the context of the large-volume scenario, we expect that the SM matter fields
are sequestered from the overall volume modulus and the leading modulus decay is from the coupling [36, 37]
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Here eT is a modified chiral superfield missing its F -component, which is related to the conformal compensator in
a superspace formulation of the theory [38]. In the presence of an oscillating solution ⇤T ⇠ m2T , this generates
similar physics to a bµ term linearly proportional to the modulus. After the modulus fragments, it could lead to
rather di↵erent dynamics due to the derivatives acting on the modulus. Again, it could be interesting to simulate
such variations in the future.

3. The potential along a D-flat direction

Supersymmetric theories with renormalizable superpotentials generically have a variety of flat directions [39, 40].
The flat directions of the renormalizable, supersymmetric MSSM, together with the leading non-renormalizable oper-
ators that lift them, have been catalogued in [41]. The existence of these flat directions is well known to have potential
e↵ects on cosmology, most famously for baryogenesis [42, 43].

More on the moduli coupling: a spurion analysis 
Modulus superfield: 

Z: generic chiral  
superfield

soft mass: m3/22 trilinear coupling: m3/22/mpl
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where gX , �X ⇠ O(1) and factors of mX/mk�2
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have been extracted to ensure that mX acts as an overall spurion for
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Coupled phase: neither  
matter domination nor  
radiation domination.

Full fragmentation (b ~ 1)

The modulus and the lighter 
field remain at comparable 
energy density.

𝝆(h)/𝝆(𝝓) ≈ 1

2

electroweak symmetry breaking and early universe cos-
mology. It also motivates further studies on the potential
of gravitational wave probes for new physics beyond the
SM.

II A Simple Model A simplified potential captur-
ing the most salient features of a Higgs field, h, coupled
to a modulus, �, is

1

2
m2

��2 +
M2

f
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0

)

✓
h†h � v2

2

◆
+ �(h†h)2. (1)

The global minimum of the potential lies at � = 0, where
the potential becomes simply the Standard Model Higgs
potential. The constant v2 = M2�

0

/(�f). Placing the
minimum at � = 0 is a pure convention; in particular, �
carries no charges and can be shifted by a constant. We
take the mass scale M2 to be the natural value of the
Higgs mass and f to be the natural scale of the modulus
field �. That is, we suppose that quantum corrections to
the Higgs mass would be of order M2 and that generic
values � ⇠ f produce Higgs masses of this order.

The e↵ective Higgs boson mass

m2

h; e↵

(�) = M2

� � �
0

f
(2)

is positive at � � 0 and negative at � ⌧ 0, transitioning
through zero when � = �

0

. The SM Higgs mass parame-
ter is m2

h; e↵

(0) = �M2�
0

/f . In this model, the criterion
for fine tuning is

Fine tuning , � ⌘ f

�
0

� 1. (3)

In other words, it is an accident if the Higgs mass is zero
at the same point where the � potential is minimized; the
closer these two points, the more surprising the result.

We will mostly have in mind supersymmetric theories,
where this toy simplified potential can arise with M2 ⇠
m2

soft

as explained in § S4 2. We consider the hierarchy
|m2

h; e↵

(0)| ⌧ m2

� . M2 ⌧ f2. Terms we have neglected,

such as (m2

�/f2)�4 or 1

f2

�2@µ�@µ�, could have important

e↵ects on the dynamics (such as oscillon formation [10–
14]). We assume that the field � stays far from singular
points in field space for all relevant times. For now we
have omitted all modulus self-interactions for simplicity.

III Non-linear Dynamics In a tuned universe, the
modulus-Higgs field system can undergo explosive, non-
perturbative field dynamics leading to fragmentation of
the fields on short time scales (t ⌧ H�1), and yield a
non-trivial equation of state for a number of e-folds of
expansion following the fragmentation.

For � � 1, the e↵ective Higgs mass term oscillates
between very large positive and negative values due to
the oscillation of �. One expects such oscillations to
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FIG. 2. The ratio of the spatially averaged energy density
in the Higgs and modulus fields as a function of time ob-
tained from our lattice simulations. This dynamics of energy
transfer between the modulus and Higgs fields is represen-
tative of the case where the modulus fragments, i.e. when
b ⌘ M4/2�f2m2

� ! 1. For the above plot we have chosen
b = 1, M2/m2

� = 102 and M/f = 10�12. The interaction
term is not included in the above energy densities.

lead to non-adiabatic, out-of-equilibrium production of
the Higgs particles. By considering tachyonic resonance
[15], and for f ⇠ �

in

⇠ m
pl

, the e�ciency of such particle
production is controlled by q ⌘ M2/m2

�. In particular,
q � 1 (as we assume) should lead to a broad range of
physical momenta for the produced Higgs particles (see
Fig. S3 in § S1).

E�cient transfer of energy from the modulus to the
Higgs field is countered by the Higgs self-interaction �.
Large self-interactions block Higgs production, whereas
at small � the Higgs field will be su�ciently populated
in non-zero momentum modes to backreact on the mod-
ulus, yielding a spatially inhomogeneous modulus (frag-
mentation). A more detailed view of the dynamics of the
modulus-Higgs system can be seen in Fig. S2 in § S1.

A Does the modulus fragment? The Higgs field
must be significantly populated in order to backreact on
the modulus and cause its fragmentation. Large q fa-
vors tachyonic resonance whereas large � limits the Higgs
field occupation numbers. We define the fragmentation
e�ciency parameter

b ⌘ M4

2�f2m2

�

, (4)

which incorporates both e↵ects to determine whether the
modulus field fragments. Note that b  1 from the
constraint that the combined modulus-Higgs potential is
positive definite. From detailed numerical simulations
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FIG. 3. Left Panel: Evolution of the equation of state of the universe for the Higgs-modulus system for di↵erent values of the
fragmentation e�ciency parameter b ⌘ M4/2�f2m2

� with tuning � = 10�6. An equation of state 1/4 . w . 1/3 is attained
for b ⇠ O[1] after fragmentation (orange curve). Smaller b yields smaller late time equations of state, with continued adiabatic
evolution. In the untuned case (� ⇠ O[1], not shown above) and b 6= 1, we get w ⇡ 0. Right Panel: For fixed b = 0.9, varying
q = M2/m2

� a↵ects when 1/4 . w . 1/3 is attained. For all curves, we have averaged the energy densities and pressures both
spatially over the simulation box and temporally over fast oscillations.

ridge and the valleys: �V = b ⇥ (1/2)m2

�(� � �
0

)2.
From detailed numerical simulations (see § S1), we see

no rapid fragmentation of the modulus field for b ⌧ 1;
energetically, there is not much to be gained by falling
into the valleys. For b ⇠ O[1], the modulus becomes
completely fragmented, i.e. the energy density in the
zero mode of the modulus is comparable to that in high-
momentum modes. We find that for the duration of our
simulations after fragmentation, ⇢h/⇢� ⇠ 1. That is, we
are always left with significant energy density in the spa-
tially inhomogeneous remnant modulus field (see Fig. 2).

We note that for simplicity, we substitute the complex
h field by a real scalar field in the simulations.

B The Equation of State The expansion history
of an FRW universe is controlled by the equation-of-state
parameter w:

w ⌘ hp
tot

i/h⇢
tot

i , (5)

where h. . .i indicates spatial averaging over H�1 scales
and temporal averaging over rapid oscillations in p

tot

(due to oscillating fields). For fixed b, the detailed dy-
namics of the fields and time scale of fragmentation can
depend on the particular values of q and �. For exam-
ple, for b ⇠ O[1], as q increases, the modulus fragments
earlier (see Fig. 3, right panel). However, w shows a sim-
pler behavior as a function of b in the tuned case when
� ⌧ 1:

• For b ⇡ 1, once the fields have fragmented, we get
1/4 . w . 1/3 for the duration of our simulations
(⇠ few e-folds).

• For b . 1, we find a non-trivial (0 < w < 1/3),
adiabatically evolving equation of state.

• For b ⌧ 1, w ! 0. Again, we see some adiabatic
evolution of w here.

To sum up, along with � ⌧ 1 (tuning), we also need
b 6⌧ 1 for significant nonlinear dynamics, fragmentation
and a non-trivial (w 6= 0) equation of state (see Fig. 3).

C Very Long-term Dynamics: Beyond Simula-
tions We can only o↵er qualitative expectations for
the long-term evolution of this highly nonlinear system.
Even with complete fragmentation and an equation of
state w ⇠ 1/3 seen in our simulations, significant energy
density remains in the modulus field. We expect that af-
ter waiting long enough, without additional physics the
universe will again become matter dominated.

Perturbative modulus decays occur on a timescale
��1 ⇠ (m

pl

/m�)2m�1

� � m�1

� , much longer than the

duration of the simulations (t
sim

⇠ few ⇥ 102m�1

� ). En-
ergy could be drained more quickly from the modulus if
the Higgs decays to other light species, freeing up phase
space for further moduli conversion into the Higgs field.
Plausibly, this might significantly reduce the energy den-
sity of the modulus compared to the decay products,
though we have not simulated such dynamics. Never-
theless, it is di�cult to see how matter domination can
be avoided if even a small fraction of the initial energy
density of the modulus survives in low momentum modes.
In general we can allow a long-time averaged, constant
0 < w

mod

< 1/3 to stand in for a range of possible behav-
iors (including the possibility of a nontrivial (w 6= 0, 1/3)
equation of state being maintained via nonlinear mode-
mode couplings [16]).



Summary of the numerical results

Backreaction efficiency parameter: 

Tachyonic resonance efficiency parameter: q ⌘ M2/m2
�

b ⇠ 1, q � 1 : w ⇡ 1/3

Efficient conversion of modulus energy into 
Higgs (radiation) 

Fine-tuning << 1, 

b ⌘ M4

2�f2m2
�

< 1
<latexit sha1_base64="bcXd7Npx7ids6w74ab0plRNTzzk=">AAACFnicbVDLSsNAFJ3UV62vqEs3g0VwY0lCQRcuim7cCBXsA5o0TCaTdujk4cykUEK+wo2/4saFIm7FnX/jtM1CWw9cOJxz78y9x0sYFdIwvrXSyura+kZ5s7K1vbO7p+8ftEWcckxaOGYx73pIEEYj0pJUMtJNOEGhx0jHG11P/c6YcEHj6F5OEuKEaBDRgGIkleTqZ55NHlI6hnbAEc5u+/U8s2ymHvARDPoWDF07GdK+lcNLaLp61agZM8BlYhakCgo0Xf3L9mOchiSSmCEheqaRSCdDXFLMSF6xU0EShEdoQHqKRigkwslmZ+XwRCk+DGKuKpJwpv6eyFAoxCT0VGeI5FAselPxP6+XyuDCyWiUpJJEeP5RkDIoYzjNCPqUEyzZRBGEOVW7QjxEKh+pkqyoEMzFk5dJ26qZRs28q1cbV0UcZXAEjsEpMME5aIAb0AQtgMEjeAav4E170l60d+1j3lrSiplD8Afa5w8fdp4H</latexit><latexit sha1_base64="bcXd7Npx7ids6w74ab0plRNTzzk=">AAACFnicbVDLSsNAFJ3UV62vqEs3g0VwY0lCQRcuim7cCBXsA5o0TCaTdujk4cykUEK+wo2/4saFIm7FnX/jtM1CWw9cOJxz78y9x0sYFdIwvrXSyura+kZ5s7K1vbO7p+8ftEWcckxaOGYx73pIEEYj0pJUMtJNOEGhx0jHG11P/c6YcEHj6F5OEuKEaBDRgGIkleTqZ55NHlI6hnbAEc5u+/U8s2ymHvARDPoWDF07GdK+lcNLaLp61agZM8BlYhakCgo0Xf3L9mOchiSSmCEheqaRSCdDXFLMSF6xU0EShEdoQHqKRigkwslmZ+XwRCk+DGKuKpJwpv6eyFAoxCT0VGeI5FAselPxP6+XyuDCyWiUpJJEeP5RkDIoYzjNCPqUEyzZRBGEOVW7QjxEKh+pkqyoEMzFk5dJ26qZRs28q1cbV0UcZXAEjsEpMME5aIAb0AQtgMEjeAav4E170l60d+1j3lrSiplD8Afa5w8fdp4H</latexit><latexit sha1_base64="bcXd7Npx7ids6w74ab0plRNTzzk=">AAACFnicbVDLSsNAFJ3UV62vqEs3g0VwY0lCQRcuim7cCBXsA5o0TCaTdujk4cykUEK+wo2/4saFIm7FnX/jtM1CWw9cOJxz78y9x0sYFdIwvrXSyura+kZ5s7K1vbO7p+8ftEWcckxaOGYx73pIEEYj0pJUMtJNOEGhx0jHG11P/c6YcEHj6F5OEuKEaBDRgGIkleTqZ55NHlI6hnbAEc5u+/U8s2ymHvARDPoWDF07GdK+lcNLaLp61agZM8BlYhakCgo0Xf3L9mOchiSSmCEheqaRSCdDXFLMSF6xU0EShEdoQHqKRigkwslmZ+XwRCk+DGKuKpJwpv6eyFAoxCT0VGeI5FAselPxP6+XyuDCyWiUpJJEeP5RkDIoYzjNCPqUEyzZRBGEOVW7QjxEKh+pkqyoEMzFk5dJ26qZRs28q1cbV0UcZXAEjsEpMME5aIAb0AQtgMEjeAav4E170l60d+1j3lrSiplD8Afa5w8fdp4H</latexit><latexit sha1_base64="bcXd7Npx7ids6w74ab0plRNTzzk=">AAACFnicbVDLSsNAFJ3UV62vqEs3g0VwY0lCQRcuim7cCBXsA5o0TCaTdujk4cykUEK+wo2/4saFIm7FnX/jtM1CWw9cOJxz78y9x0sYFdIwvrXSyura+kZ5s7K1vbO7p+8ftEWcckxaOGYx73pIEEYj0pJUMtJNOEGhx0jHG11P/c6YcEHj6F5OEuKEaBDRgGIkleTqZ55NHlI6hnbAEc5u+/U8s2ymHvARDPoWDF07GdK+lcNLaLp61agZM8BlYhakCgo0Xf3L9mOchiSSmCEheqaRSCdDXFLMSF6xU0EShEdoQHqKRigkwslmZ+XwRCk+DGKuKpJwpv6eyFAoxCT0VGeI5FAselPxP6+XyuDCyWiUpJJEeP5RkDIoYzjNCPqUEyzZRBGEOVW7QjxEKh+pkqyoEMzFk5dJ26qZRs28q1cbV0UcZXAEjsEpMME5aIAb0AQtgMEjeAav4E170l60d+1j3lrSiplD8Afa5w8fdp4H</latexit>

In our simulation, choose m𝝓 ≲ M << f~ Mpl  and  λ << 1 (discuss in later  
slides).



Comments on thermalization and small quartic  
coupling

We imagine that there is no SM thermal bath when modulus 
starts to oscillate. This may be achieved when inflaton decays to 
hidden sector dominantly or modulus is the inflaton.  

We don’t consider the decays of Higgs particles. The interesting 
dynamics happens in the Higgs field space with tiny quartic 
coupling. Then the Higgs VEVs are large in most regions and thus 
SM particles are more heavy than the Higgs. More detailed 
studies and numerical simulations are needed.  

When we imbed the toy model in a supersymmetric model, if the 
D-flat direction is tachyonic, the Higgs quartic coupling is tiny 
around that direction. When modulus oscillates, the oscillation 
could probe these regions. (If you don’t believe me and are still 
intrigued, talk to me afterwards) 
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Power spectra

Modulus Higgs

As time grows (the dashed arrow), modulus field fragments 
(P ~  O(1)) and power propagates to higher comoving modes. 
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FIG. S3. The evolution of the normalized fields power spectra for the orange curve in Fig. 3 (with b = 1, q = 102, f = m
pl

).
The normalized power spectrum of a field F (x) is PF (k) ⌘ ��2

osc

(d/d ln k)F 2(x), where �
osc

is the amplitude of the background
modulus oscillations. For this normalization, when P�(k) = O(1), the modulus becomes inhomogeneous. Initially, the tachyonic
instability in the Higgs is closely followed by excitations in the modulus (due to re-scattering). Comoving modes k < m�q1/2

grow exponentially. At the third oscillation of the modulus backreaction takes place. The spectra then settle down and power
slowly propagates towards higher comoving modes.

whereas we set a
in

= 1, with a
end

⇠ O[few e-folds]. Note that a slightly super-horizon box was needed sometimes
to capture the tachyonic instability in h. The number of co-moving lattice points is N = 5123, and our time steps
vary between dt = 0.00125m�1

� to 0.000625m�1

� depending on the parameters chosen. The violation of the energy

conservation in the above simulations is always less than O[10�4].

At the start of the simulations � has a background value, set to �
in

= m
pl

. The initial background field velocity,
�̇

in

, is equal to �3H
in

�
in

/2, in accordance with LatticeEasy conventions. The initial Fourier modes of the fields
and field velocities (excluding the zero modes of � and �̇) are drawn from Gaussian probability distributions with
covariance matrices equal to the squared amplitudes of the corresponding vacuum fluctuations. Initially, the energy
budget is dominated by the homogeneous �, i.e., almost no energy is stored in the gradients. The values of �

in

and
�̇

in

imply that w
in

⇡ �1/4 which is equivalent to starting the simulation soon after the end of slow-roll inflation if �
was the inflaton.

Simulation Outputs: Snapshots of the evolution of Higgs and modulus fields are shown in Fig. S2. The modulus
first begins its oscillations from �

in

= m
pl

, passes through � = 0, causing the Higgs potential to develop minima.
After a few oscillations, the fields start exploring these minima in a spatially inhomogeneous manner, leading to
the formation of temporary domains. This is also the time when the backreaction on the oscillating modulus field
becomes relevant. These domains quickly interact with each other and the still oscillating modulus field leading to
complex spatio-temporal behaviour of the fields. The domains annihilate and the modulus field fragments spatially.
The formation and dynamics of these domains turn out to be the dominant source of the gravitational wave signal
(see § S2).

The existence of transient h-domains (with accompanying domain walls) in this class of models is novel. The
development of a non-zero � vev was first pointed out in [15] and understood in terms of the initial backreaction of
the resonantly produced h quanta on the � condensate, but the existence of domain walls in such models was not
discussed. Note that within �t ⇠ 10m�1

� , the domains disappear completely, and the fields enter a long turbulent
stage. Perhaps, the shortness of the period in which the domains exist was the reason they were not noticed in [15].

At a more detailed level, we also monitored the power spectra of the two fields PF (k) / k3|F (k)|2 (F = h, �)
to understand the distribution and time evolution of field perturbations at di↵erent scales (see Fig. S3). Note that
the power spectra have been scaled by the the amplitude of the oscillating modulus. Thus when the spectra are of
order unity, the rms fluctuations in the fields are becoming comparable to the background modulus field, signaling
fragmentation of the modulus.

Along with the fields, we keep track of the spatially averaged energy density

⇢ = ⇢� + ⇢h + ⇢
int

, (S12)

FIG. S3. The evolution of the normalized fields power spectra for the orange curve in Fig. 3 (with b = 1, q = 102, f = m
pl

).
The normalized power spectrum of a field F (x) is PF (k) ⌘ ��2

osc

(d/d ln k)F 2(x), where �
osc

is the amplitude of the background
modulus oscillations. For this normalization, when P�(k) = O(1), the modulus becomes inhomogeneous. Initially, the tachyonic
instability in the Higgs is closely followed by excitations in the modulus (due to re-scattering). Comoving modes k < m�q1/2

grow exponentially. At the third oscillation of the modulus backreaction takes place. The spectra then settle down and power
slowly propagates towards higher comoving modes.

4. Lattice Simulations

We use the parallelized version of LatticeEasy [28] to calculate the non-linear evolution of the fields and the self-
consistent evolution of a(t). The initial physical length of the edge of the simulation box is L

in

= 0.5H�1

in

� 2.5H�1

in

,
whereas we set a

in

= 1, with a
end

⇠ O[few e-folds]. Note that a slightly super-horizon box was needed sometimes
to capture the tachyonic instability in h. The number of co-moving lattice points is N = 5123, and our time steps
vary between dt = 0.00125m�1

� to 0.000625m�1

� depending on the parameters chosen. The violation of the energy

conservation in the above simulations is always less than O[10�4].
At the start of the simulations � has a background value, set to �

in

= m
pl

. The initial background field velocity,
�̇

in

, is equal to �3H
in

�
in

/2, in accordance with LatticeEasy conventions. The initial Fourier modes of the fields
and field velocities (excluding the zero modes of � and �̇) are drawn from Gaussian probability distributions with
covariance matrices equal to the squared amplitudes of the corresponding vacuum fluctuations. Initially, the energy
budget is dominated by the homogeneous �, i.e., almost no energy is stored in the gradients. The values of �

in

and
�̇

in

imply that w
in

⇡ �1/4 which is equivalent to starting the simulation soon after the end of slow-roll inflation if �
was the inflaton.

Simulation Outputs: Snapshots of the evolution of Higgs and modulus fields are shown in Fig. S2. The modulus first
begins its oscillations from �

in

= m
pl

, then passes through � = 0, causing the Higgs potential to develop minima.
After a few oscillations, the fields start exploring these minima in a spatially inhomogeneous manner, leading to
the formation of temporary domains. This is also the time when the backreaction on the oscillating modulus field
becomes relevant. These domains quickly interact with each other and the still oscillating modulus field leading to
complex spatio-temporal behaviour of the fields. The domains annihilate and the modulus field fragments spatially.
The formation and dynamics of these domains turn out to be the dominant source of the gravitational wave signal
(see § S2). The existence of domain walls relies on there being a two dimensional field space. If the field space is
higher dimensional, it is possible that higher dimensional transient defects like strings or textures will play a similar
role.

The existence of transient h-domains (with accompanying domain walls) in this class of models is novel. The
development of a non-zero � vev was first pointed out in [15] and understood in terms of the initial backreaction of
the resonantly produced h quanta on the � condensate, but the existence of domain walls in such models was not
discussed. Note that within �t ⇠ 10m�1

� , the domains disappear completely, and the fields enter a long turbulent
stage. Perhaps, the shortness of the period in which the domains exist was the reason they were not noticed in [15].

At a more detailed level, we also monitored the power spectra of the two fields PF (k) / k3|F (k)|2 (F = h, �)
to understand the distribution and time evolution of field perturbations at di↵erent scales (see Fig. S3). Note that
the power spectra have been scaled by the the amplitude of the oscillating modulus. Thus when the spectra are of
order unity, the rms fluctuations in the fields are becoming comparable to the background modulus field, signaling
fragmentation of the modulus.



Possible complication
Assumption: a radiation-like equation of state till the perturbative 
decay of the modulus (which happens at much later time since the 
modulus couplings to SM are suppressed by the Planck scale). 
Yet the very long-term dynamics is unclear…
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metry, then m2φ2 inflation (with a high reheat tempera-
ture) predicts a value ns ≃ 0.965, at the high end of the
currently allowed 1σ range, and a prediction that may
be testable with future CMB data and galaxy surveys.
As we will see below, these conclusions are robust to the
current order-unity uncertainty in r.

ln(1/aH)

ln a
ln ak ln aend ln are ln aeq ln a0

Nk Nre NRD

Tre

k

wre

inflation

reheating

radiation
domination

T0Vk

ρend

FIG. 1: The evolution of the comoving Hubble scale 1/aH .
The reheating phase connects the inflationary phase and
the radiation era. Compared to instantaneous reheating
(thick dotted curve), a reheating equation-of-state parame-
ter wre < 1/3 implies more post-inflationary e-folds of expan-
sion. Fewer post-inflationary e-folds requires wre > 1/3 (thin
dotted curve).

We start by sketching the cosmic expansion history in
Fig. 1. At early times, the inflaton field φ drives the
quasi–de-Sitter phase for Nk e-folds of expansion. The
comoving horizon scale decreases as ∼ a−1. The reheat-
ing phase begins once the accelerated expansion comes
to an end and the comoving horizon starts to increase.
After another Nre e-folds of expansion, the energy in the
inflaton field has been completely dissipated into a hot
plasma with a reheating temperature Tre. Beyond that
point, the Universe expands under radiation domination
for another NRD e-folds, before it finally makes a transi-
tion to matter domination.
It is clear from Fig. 1 that the number of e-folds be-

tween the time that the current comoving horizon scale
exited the horizon during inflation and the end of infla-
tion must be related to the number of e-folds between the
end of inflation and today if the dependence of (aH)−1

on a during reheating is known. The expansion history
also allows us to trace the dilution of the energy den-
sity in the Universe. To match the energy density during
inflation, as fixed by r, to the energy density today, a
second relation must be satisfied. These two matching
conditions, for scale and for energy density, respectively,
underly the arguments that follow.
Quantitative analysis. We consider power-law potentials

V (φ) =
1

2
m4−αφα, (1)

for the inflaton, with power-law index α and mass pa-
rameter m. From the attractor evolution of the inflaton

field 3Hφ̇+ V,φ ≃ 0, one can determine the number

N =

∫ φend

φ

Hdφ

φ̇
≃

φ2 − φ2
end

2αM2
pl

≃
φ2

2αM2
pl

, (2)

of e-folds from the time that the field value is φ until the
end of inflation. Note that the field value at the end of
inflation φend is small compared to that during slow-roll.
The conventional slow-roll parameters are then given by

ϵ = α/(4N), and η = (α− 1)/(2N). (3)

For power-law potentials, the scalar spectral tilt ns − 1
and the tensor-to-scalar ratio r are inversely proportional
to the number of e-folds,

ns − 1 = −(2 + α)/(2N), r = 4α/N. (4)

Simultaneous measurements of ns − 1 and r with high
precision in principle pin down both N and α. However,
given the current uncertainty in r, we treat α as a model
input and use ns − 1 to infer both N and r. As we shall
see, the precise value of r does not affect our results.
In cosmology we observe perturbation modes on scales

that are comparable to that of the horizon. For example,
the pivot scale at which Planck determines ns lies at k =
0.05 Mpc−1. The comoving Hubble scale akHk = k when
this mode exited the horizon can be related to that of the
present time,

k

a0H0
=

ak
aend

aend
are

are
aeq

aeqHeq

a0H0

Hk

Heq
. (5)

Here quantities with subscript k are evaluated at the
time of horizon exit. Similar subscripts refer to other
epochs, including the end of inflation (end), reheat-
ing (re), radiaton-matter equality (eq) and the present
time (0). Using eNk = aend/ak, eNre = are/aend, and
eNRD = aeq/are, we obtain a constraint on the total
amount of expansion [24],

ln
k

a0H0
= −Nk −Nre −NRD + ln

aeqHeq

a0H0
+ ln

Hk

Heq
. (6)

The Hubble parameter during inflation is given by Hk =
πMpl (rAs)

1/2 /
√
2, with the primordial scalar amplitude

ln(1010As) = 3.089+0.024
−0.027 from Planck [9]. For a given

power-law index α, Nk and r are determined from ns−1,
and hence lnHk is known.
In addition to Eq. (6), a second relation between the

various e-folds of expansion can be derived by tracking
the post-inflationary evolution of the energy density and
temperature. The inflaton field at the end of inflation has
a value φend = (α2M2

pl/2ϵ0)
1/2 under the estimate that

inflation terminates at ϵ = ϵ0 ≃ 1, while its value dur-
ing inflation satisfies Nk = φ2

k/(2αM
2
pl). Therefore, the

final stage of inflation phase has potential energy Vend =
Vk(φend/φk)α, where Vk = 3M2

plH
2
k = (3π2/2)M4

pl rAs.

early-time matter domination

12 Planck Collaboration: Constraints on inflation

Model Parameter Planck TT+lowP Planck TT+lowP+lensing Planck TT+lowP+BAO Planck TT,TE,EE+lowP
ns 0.9666 ± 0.0062 0.9688 ± 0.0061 0.9680 ± 0.0045 0.9652 ± 0.0047

⇤CDM+r r0.002 < 0.103 < 0.114 < 0.113 < 0.099
�2� lnLmax 0 0 0 0

+dns/d ln k

ns 0.9667 ± 0.0066 0.9690 ± 0.0063 0.9673 ± 0.0043 0.9644 ± 0.0049

⇤CDM+r r0.002 < 0.180 < 0.186 < 0.176 < 0.152
r < 0.168 < 0.176 < 0.166 < 0.149

dns/d ln k �0.0126+0.0098
�0.0087 �0.0076+0.0092

�0.0080 �0.0125 ± 0.0091 �0.0085 ± 0.0076
�2� lnLmax �0.81 �0.08 �0.87 �0.38

Table 4. Constraints on the primordial perturbation parameters for ⇤CDM+r and ⇤CDM+r+dns/d ln k models from Planck.
Constraints on the spectral index and its dependence on the wavelength are given at the pivot scale of k⇤ = 0.05 Mpc�1.

Fig. 5. Marginalized joint confidence contours for
(ns , dns/d ln k), at the 68 % and 95 % CL, in the presence
of a non-zero tensor contribution, and using Planck TT+lowP or
Planck TT,TE,EE+lowP. Constraints from the Planck 2013 data
release are also shown for comparison. The thin black stripe
shows the prediction of single-field monomial inflation models
with 50 < N⇤ < 60.

become

r0.002 < 0.09 (95 % CL, Planck TT+lowP+WP), (31)
ns = 0.9655 ± 0.058 (68 % CL, Planck TT+lowP+WP), (32)
⌧ = 0.073+0.011

�0.013 (68 % CL, Planck TT+lowP+WP). (33)

When tensors and running are both varied, we obtain r0.002 <
0.14 (95 % CL) and dns/d ln k = �0.010 ± 0.008 (68 % CL)
for Planck TT+lowP+WP. These constraints are all tighter than
those based on Planck TT+lowP only.

5.3. The tensor-to-scalar ratio and the low-` deficit in
temperature

As noted previously (Planck Collaboration XV, 2014; Planck
Collaboration XVI, 2014; Planck Collaboration XXII, 2014), the
low-` temperature data display a slight lack of power compared
to the expectation of the best-fit tensor-free base ⇤CDM model.
Since tensor fluctuations add power on small scales, the effect
will be exacerbated in models allowing r > 0.
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Fig. 6. Marginalized joint confidence contours for (ns , r), at the
68 % and 95 % CL, in the presence of running of the spectral
indices, and for the same data combinations as in the previous
figure.

In order to quantify this tension, we compare the observed
constraint on r to that inferred from simulated Planck data. In
the simulations, we assume the underlying fiducial model to be
tensor-free, with parameters close to the base⇤CDM best-fit val-
ues. We limit the simulations to mock temperature power spec-
tra only and fit these spectra with an exact low-` likelihood for
2  `  29 (see Perotto et al., 2006), and a high-` Gaussian like-
lihood for 30  `  2508 based on the frequency-combined,
foreground-marginalized, unbinned Planck temperature power
spectrum covariance matrix. Additionally, we impose a Gaussian
prior of ⌧ = 0.07 ± 0.02.

Based on 100 simulated data sets, we find a 95 % CL
upper limit on the tensor-to-scalar ratio of r̄2� ⇡ 0.260.
The corresponding constraint from real data (using low-
` Commander temperature data, the frequency-combined,
foreground-marginalized, unbinned Planck high-` TT power
spectrum, and the same prior on ⌧ as above) reads r < 0.123,
confirming that the actual constraint is tighter than what one
would have expected. However, the actual constraint is not ex-
cessively unusual: out of the 100 simulations, 4 lead to an even
tighter bound, corresponding to a significance of about 2�.
Thus, under the hypothesis of the base ⇤CDM cosmology, the
upper limit on r that we get from the data is not implausible as a
chance fluctuation of the low multipole power.

Inflationary constraints (ns, r) Constraints on after-inflation history, e.g.,
modulus mass

(ns, r) and the Time Interval After Inflation

Liddle, Leach ’03 
Dai, Kamionkowski, Wang ’14
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where we assume that the universe can be approximated
as radiation dominated shortly after � begins oscillation.
Note that for � ⌧ 1, these frequencies are beyond the
reach of current interferometric detectors (f . 103Hz).

The fraction of energy density in gravitational waves
today (per logarithmic interval in frequency around f0)
can be estimated as [11, 12]

⌦gw(f0) ⇠ ⌦r0�
2
⇡�2, (7)

where ⌦r0 is today’s fraction of energy density stored
in radiation and �⇡ is the fraction of the energy den-
sity in anisotropic stresses at the time of gravitational
wave production. From the scalar field simulations, [MA:
�⇡ ⇠ 0.1 and � ⇠ 0.1 (or estimated from linear in-
stability calculations, and energetic arguments)] which
yield ⌦gw ⇠ 10�9 � 10�10. This result is consistent
with our more detailed lattice simulations which calculate
the gravitational wave spectrum using HLattice [13](see
Fig. ??). Note that detectable ⌦gw(f0 ⇠ 102Hz) & 10�9

for aLIGO at design sensitivity [14].
We can relax the assumption of a radiation-like equa-

tion of state immediately after fragmentation and gener-
alize the above formulae. Assuming that (i) fragmenta-
tion and gravitational wave productions happens quickly
after the modulus domination, (ii) the appropriately av-
eraged equation of state w = wmod for Nmod e-folds af-
ter fragmentation and before final radiation domination
kicks in, we get the following generalization of the above
formulae

f0 ⇠ e�
N

mod

4

(1�3w
mod

)
⇣ m�

103 TeV

⌘1/2
105��1 Hz

⌦gw(f0) ⇠ e�N
mod

(1�3w
mod

)⌦r0�
2
⇡�2 (8)

Note that a more observationally accessible, lower fre-
quency signal using large values of Nmod(1 � 3wmod)
would lead to a significant suppression of ⌦gw, making
detection challenging.

B Constraints from/on Inflationary Observables
Another possible consequence of the non-linear dynamics
is the change of the allowed e-folds during inflation. The
e-folds between the time the current co-moving horizon
scale exited the horizon during inflation and the end of
inflation are related to the e-folds between the end of in-
flation and today in a given expansion history [15]. The
expansion history also allows us to keep track of the evo-
lution of the energy density. Then the ns and r bounds
from CMB measurements constrain an inflationary model
together with its associated evolution afterwards. The
co-moving Hubble scale k = akHk that exits the horizon
during inflation could be written as

k = akHk =
ak
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are
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adec
adecHk, (9)

where aend, are, amod, adec are the scale factors at the end
of inflation, at the end of inflationary reheating, when

the modulus starts to oscillate, and when full decays of
the modulus happen (equivalently when radiation domi-
nates again) respectively. Using this relation and assum-
ing that during inflationary reheating, the constant in
the equation of state doesn’t exceed 1/3, we can obtain
a conservative lower bound on m�,
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where r is the tensor-to-scalar ratio and ⇢k (⇢end) is the
energy density when the mode exits the horizon (at the
end of inflation). For 0 < wmod < 1/3, the bound can
get considerably weaker compared to the wmod = 0 case.
Details of the derivation and more discussions on the im-
plications of this bound can be found in § S2.

V More Realistic Models The simulation estab-
lishes that the relation M4 ⇠ �m2

�f2 is crucial for frag-
mentation. In a gravity-mediated SUSY scenario, we
expect M ⇠ m� ⇠ msoft ⌧ f ⇠ Mpl with msoft the
SUSY breaking soft mass. Modulus fragmentation then
requires a tiny Higgs quartic coupling � ⇠ m2

soft/M
2
Pl, at

first glance conflicting with the known SM Higgs mass.
However, in the SUSY context with two Higgs doublets,
there is a D-flat direction |Hu| ⇡ |Hd| along which the
e↵ective quartic coupling can be tiny. If, as the modu-
lus oscillates, the D-flat direction becomes tachyonic, we
could achieve b ⇠ 1.

Loop corrections lifting the D-flat direction are tiny at

large Higgs VEV, e.g. / log
⇣
1 + m2

soft

y2

t hHi2

⌘
. More impor-

tant corrections originate from higher dimension opera-
tors, for instance a Kähler term
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with X a SUSY breaking spurion and ⇤ the cuto↵
(e.g. MPl). Such Kähler corrections produce an e↵ective

Higgs quartic ⇠ m2

soft

⇤2

, consistent with fragmentation e�-
ciency parameter b ⇠ 1. This allows the Higgs to achieve
VEVs of order ⇤ along the flat direction. More details
are in § S4.

Other possible directions include modifying the hierar-
chies between di↵erent energy scales, for instance, having
m� ⌧ M ⌧ f ⇠ Mpl while keeping the Higgs quar-
tic coupling order one. This requires sequestering SUSY
breaking to the modulus compared to the Higgs field. We
will leave more detailed model building to future work.

VI Conclusions and Future Directions If the
physical constants of the SM are determined by the vac-
uum expectation values of some scalar fields, in a tuned
universe, even a small displacement of such a scalar field
from its minimum can dramatically alter electroweak

Given a cosmological history,
Nk related to the total number of e-folds 
between end of inflation and today; 
energy density during inflation related to
energy density today. 
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Note that a more observationally accessible, lower fre-
quency signal using large values of Nmod(1 � 3wmod)
would lead to a significant suppression of ⌦gw, making
detection challenging.
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Another possible consequence of the non-linear dynamics
is the change of the allowed e-folds during inflation. The
e-folds between the time the current co-moving horizon
scale exited the horizon during inflation and the end of
inflation are related to the e-folds between the end of in-
flation and today in a given expansion history [15]. The
expansion history also allows us to keep track of the evo-
lution of the energy density. Then the ns and r bounds
from CMB measurements constrain an inflationary model
together with its associated evolution afterwards. The
co-moving Hubble scale k = akHk that exits the horizon
during inflation could be written as
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where r is the tensor-to-scalar ratio and ⇢k (⇢end) is the
energy density when the mode exits the horizon (at the
end of inflation). For 0 < wmod < 1/3, the bound can
get considerably weaker compared to the wmod = 0 case.
Details of the derivation and more discussions on the im-
plications of this bound can be found in § S2.

V More Realistic Models The simulation estab-
lishes that the relation M4 ⇠ �m2

�f2 is crucial for frag-
mentation. In a gravity-mediated SUSY scenario, we
expect M ⇠ m� ⇠ msoft ⌧ f ⇠ Mpl with msoft the
SUSY breaking soft mass. Modulus fragmentation then
requires a tiny Higgs quartic coupling � ⇠ m2

soft/M
2
Pl, at

first glance conflicting with the known SM Higgs mass.
However, in the SUSY context with two Higgs doublets,
there is a D-flat direction |Hu| ⇡ |Hd| along which the
e↵ective quartic coupling can be tiny. If, as the modu-
lus oscillates, the D-flat direction becomes tachyonic, we
could achieve b ⇠ 1.

Loop corrections lifting the D-flat direction are tiny at

large Higgs VEV, e.g. / log
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⌘
. More impor-

tant corrections originate from higher dimension opera-
tors, for instance a Kähler term
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with X a SUSY breaking spurion and ⇤ the cuto↵
(e.g. MPl). Such Kähler corrections produce an e↵ective

Higgs quartic ⇠ m2

soft

⇤2

, consistent with fragmentation e�-
ciency parameter b ⇠ 1. This allows the Higgs to achieve
VEVs of order ⇤ along the flat direction. More details
are in § S4.

Other possible directions include modifying the hierar-
chies between di↵erent energy scales, for instance, having
m� ⌧ M ⌧ f ⇠ Mpl while keeping the Higgs quar-
tic coupling order one. This requires sequestering SUSY
breaking to the modulus compared to the Higgs field. We
will leave more detailed model building to future work.

VI Conclusions and Future Directions If the
physical constants of the SM are determined by the vac-
uum expectation values of some scalar fields, in a tuned
universe, even a small displacement of such a scalar field
from its minimum can dramatically alter electroweak

For some inflation models, (ns, r) disfavors extended period of 
matter domination and sets a (much) stronger constraint on 
modulus mass compared to the well-known cosmological 
modulus bound (Dutta, Maharana ’14)
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Combining all the equations above, we have

1 � 3wmod

4
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4
ln ⇢end + ln(a0T0) (S9)

This equation relates the e-folds in the modulus epoch to the e-folds in the inflation epoch. For slow-roll inflation,

H2
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2
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3M2
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4
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6

◆
+

1

4
ln ⇢k, (S10)

where r is the tensor-to-scalar ratio, As the amplitude of scalar perturbation and ⇢k is the energy density when the
mode exits the horizon. In addition, using
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◆ 3

2
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mod
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3

2
(1 + wmod)H(tmod)(tdec � tmod), (S11)

Nmod could be expressed in terms of the modulus mass,
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where we approximated tdec � tmod by the perturbative lifetime of the modulus ⌧mod =
⇣

cm3

�

M2

pl

⌘�1

and H(tmod) ⇡ m�.

Putting Eq. (S9), (S10), (S12) together, we have
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= �Nk � 1 � 3wre

4
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1

4
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⇢end

◆
, (S14)

where we use ln
�
1010As

�
= 3.062 (central value of Planck TT+lowP+lensing) at k = 0.05 Mpc�1 [19], T0 = 2.725 K,

g0;s = 3.91 and gdec;s = gdec = 10.76. Thus we obtain a lower bound on m�,

m2
� & 3(1 + wmod)

2c
M2

pl exp
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�6(1 + wmod)

1 � 3wmod

✓
�Nk � 1 � 3wre

4
Nre + 56.8 +

1

4
ln r +

1

4
ln

✓
⇢k

⇢end
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Note that generically we expect 0 < wre < 1/3 and 1�3w
re

4 Nre > 0, which leads to a conservative bound on m�

independent of the details of the inflation reheating stage

m2
� & 3(1 + wmod)
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pl exp
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4
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4
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⇢end
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(S16)

The presence of a non-zero wmod could change the bound on m� dramatically compared to the case with wmod = 0.
Since the logarithmic terms in the exponent in Eq. S15, S16 are usually tiny, a crude rule of thumb is that when
Nk < 57.0, the bound could be significantly weakened with wmod > 0 while when Nk > 57.0, the bound is more
tightened with wmod < 0. The details of the bounds depend on specific inflation models. Let’s take a look at the
model with a polynomial potential

Vinf =
1

2
m4�↵�↵

inf , (S17)For example, 

For α = 1,
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For a), small quartics can arise along D-flat directions in 
SUSY.  



More realistic model: SUSY

Reminder: 
 
The tree-level MSSM has a Higgs quartic coupling from D-terms, 
completely fixed by the Higgs’ electroweak representations: 

V = (|µ|2 +m2
Hu

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2 � (bH0
uH

0
d + c.c.)

+
1

8
(g2 + g02)(|H0

u|2 � |H0
d |2)2

Notice the D-flat direction: |H0
u| = |H0

d |

m� . M ⌧ f ⇠ Mpl,� ⌧ 1How to achieve small Higgs quartic?



The Higgs quartic coupling

a SUSY-breaking contribution to the Higgs quartic comes from loops of 
stops:
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V = (|µ|2 +m2
Hu
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u|2 + (|µ|2 +m2
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In addition to the tree-level potential,

Non-vanishing along the D-flat direction. Does it stop us?
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EWSB Along the Flat Direction
Suppose there is a tachyonic direction pointing along the flat direction, that is, 
that we have

�
1 1

�✓|µ|2 +m2
Hu

�b
�b |µ|2 +m2

Hd

◆✓
1
1

◆
= m2

Hu
+m2

Hd
+ 2|µ|2 � 2b < 0

How large will the Higgs VEV be? At first, you would expect to be stopped by the 
loop-level quartic coupling:

But importantly, the stop mass here is the geometric mean of the physical stop 
masses,

m2
t̃ ⇡ m2

Q3,ū3
+ y2t |H0

u|2

and as we move far out along the flat direction the stop and top become 
degenerate:

hH0

ui � M
soft

) m
˜t ⇡ mt

Approximate SUSY suppresses the quartic by a factor of 
Msoft2/H2, allowing Higgs VEVs much larger than soft masses!



Flat directions should always be lifted at very large field values.

Z
d4✓

X†X
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(H†
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(H†
uHu)

2

Kähler corrections are compatible with VEVs of order the cutoff:

Z
d2✓

✓
µHu ·Hd +

1

M
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◆
Superpotential terms at first glance appear more dangerous.

µ†

M
(H†

uHu)(Hu ·Hd) + . . . ) hhi ⇠
p
µM

gives rise to quartics:

but given that some spurion forbids the mu term we expect

1

M
. µ

⇤2
) hhi ⇠ ⇤

Higher-Dimension Operators Lifting the Flat 
Direction



Possible future directions

Non-linear dynamics
Model building

Signals 

saxion,  
D-flat direction

High frequency GW Other consequences: 
phase transitions?

Different hierarchies  
of parameters

More powerful 
simulation

Analytical  
understanding



Amin, Easther, Finkel, Flauger, Hertzberg ’11

Amin, Lozanov ’17

The shapes of potentials that arise for 
moduli can lead to formation of 
“oscillons”—localized lumps of oscillating 
field. 

This could change our story in interesting 
ways, as the modulus doesn’t redshift inside 
the oscillon. More mass sign flipping and 
less backreaction? 

No conclusions yet! Need more studies.

Other possible dynamics:  
Oscillons


