Tensions in ACDM

Interplay between Particle and Astroparticle physics 11 October 2018

> Graeme Addison Johns Hopkins University gaddison@jhu.edu

Addison *et al.* (2016), ApJ, 818, 132, **arXiv/1511.00055** Addison *et al.* (2018), ApJ, 853, 119, **arXiv/1707.06547** Huang, Addison, *et al.* (2018), ApJ submitted, **arXiv/1804.05428**

Overview

Status of Hubble constant tension in 2018

Challenges for new physics explanations

 Tensions in growth of structure (e.g., weak lensing)

Hubble constant tension in 2018

- April 2018: GAIA data release 2. New parallax measurements to Milky Way Cepheid variable stars. New distance ladder constraint 73.53 +/- 1.62 km s⁻¹ Mpc⁻¹
- July 2018: *Planck* 2018 (final*) data release. Improved CMB polarization measurements tighten ΛCDM H₀ constraint to 67.36 +/- 0.54 km s⁻¹ Mpc⁻¹
- 3.6σ tension, rising to over 4σ using preliminary improvements to GAIA parallax offset correction (see Riess *et al.* 2018 arXiv/1804.10655 for more details)

Direct Measurement of the Present Expansion Rate, H₀

In the expanding Universe, a(t), the expansion rate is: Want a(t), measure proxies \rightarrow Hubble diagram, D(z)Need <u>absolute distances</u>, use a "distance ladder"

A Coordinated Program to Measure H₀ to percent precision

The SH₀ES Project (2005)

(Supernovae, H_0 for the dark energy Equation of State)

A. Riess, L. Macri, S. Casertano, D. Scolnic, A. Filippenko, W. Yuan, S. Hoffman, et al

Measure H₀ to percent precision purely <u>empirically</u> by:

- A clean, simple ladder: Geometry-Cepheids -> SNe la
- Reducing systematic error with better data, better collection
- Thorough propagation of statistical and systematic errors

SN Ia and Cepheids: Best Proven Standardized Candles for far, relative distances

Type Ia Supernovae, <u>Exploding Stars</u>, $10^9 L_{\odot}$ Among Brightest Supernovae Intrinsic Precision ~ 5% in distance Cepheids, <u>Pulsating Stars</u>, $10^5 L_{\odot}$ Period-luminosity relation, bright Intrinsic Precision~ 4% in distance

An explosion resulting from the thermonuclear detonation of a White Dwarf Star.

Bightes

Cepheids are common in hosts of SNe Ia

The Hubble Constant in 3 Steps: Present Data

Systematics R16: 23 Analysis Variants

Analysis VariantB	H ₀
Best Fit (R16, w/ HST, Gaia π , R18=73.53)	73.24
Reddening Law: LMC-like (R _V =2.5, not 3.3)	73.15
Reddening Law: Bulge-like (N15)	73.39
No Cepheid Outlier Rejection (normally 2%)	73.49
No Correction for Extinction	74.79
No Truncation for Incomplete Period Range	74.39
Metallicity Gradient: None (normally fit)	73.30
Period-Luminosity: Single Slope	73.26
Period-Luminosity: Restrict to P>10 days	71.64
Period-Luminosity: Restrict to P<60 days	73.06
Supernovae z>0.01 (normally z>0.023)	73.38
Supernova Fitter: MLCS (normally SALT)	74.39
Supernova Hosts: Spiral (usually all types)	73.37
Supernova Hosts: Locally Star Forming	73.54
Cepheid Measurements: Optical Only	71.74

Planck 2018 results (July)

Allowed param volume space shrunk by factor of **several x10⁵** since pre-WMAP

Message from CMB: ACDM has not broken!

Consistency between WMAP and Planck 2015

 $Cov(W \times P)/\sqrt{Var(W) \times Var(P)}$ $\begin{array}{ccc} 0.0 & 0.0 \\ 0$

bin number

What about additional information at higher multipoles that *WMAP* did not measure?

Huang, Addison, et al. (ApJ submitted)

Planck high-*ℓ* vs low-*ℓ* ΛCDM parameters

Addison et al. (2016)

Planck high-*ℓ* vs low-*ℓ* ΛCDM parameters

~2.5 σ internal tension in parameters relevant for low-redshift comparisons

Addison et al. (2016)

Information from Baryon Acoustic Oscillations (BAO)

$$r_{\rm s} = \int_{z_{\rm drag}}^{\infty} \frac{c_{\rm s}(z)}{H(z)} {\rm d}z$$

sound horizon

$$\Delta\theta = r_{\rm s}/(1+z)D_{\rm A}$$

$$\Delta z = H(z) r_{\rm s}/c$$

BAO observables

- Standard ruler length set at recombination ('sound horizon')
- Expands with the universe
- ~150 Mpc comoving large enough scale to be (nearly) unchanged by nonlinear growth

Baryon acoustic oscillations (BAO)

What is the BAO scale?

- Early-universe expansion rate (*matter vs radiation*)
- Baryon-photon ratio
- Number of effective *neutrino species*

 $\Delta \theta = r_{\rm s} / (1 + z) D_{\rm A}$ Late-time expansion (*matter vs dark energy*)

BAO measurements alone cannot distinguish between change in absolute sound horizon r_s and change in H_0

Synergy between BAO and CMB

 $\tau = 0.07 \pm 0.02$

Addison et al. (2018)

BAO + baryon density from D/H

Combining galaxy and Lya BAO with D/H:

3.30 $H_0 = 66.98 \pm 1.18 \text{ km s}^{-1} \text{ Mpc}^{-1}$

3.0σ lower than the distance ladder...

... and *independent* from CMB anisotropy measurements

 $d(p,\gamma)^{3}$ He reaction rate uncertainty important: empirical rate -> 67.81 ± 1.25 km s⁻¹ Mpc⁻¹

2.5σ **2.8σ**

Galaxy, Lyα BAO individually prefer higher *H*₀... (but can replace Lyα with Dark Energy Survey galaxy weak lensing arXiv/1711.00403 and get essentially same answer)

WMAP

Blue: CMB Green: CMB + BAO

ACTPol

SPTpol

Planck 2015

Planck 2015, *l* <800

Planck 2015, *t*>800

BAO + D/H

Distance ladder (2016)

H0LiCoW time delay H_0 (1607.01790)

- Three lenses at z=0.30, 0.45, 0.63
- 2.5 σ higher than Planck assuming Λ CDM
- Agree well with distance ladder

72.8 +/- 2.4

Newer results Birrer et al. 1809.01274

But BAO and higher-z SNe do not allow big enough shifts to reconcile with distance ladder!

Planck, SNe, BAO 68.14 \pm 0.85 (*w*) 68.18 \pm 0.87 (*w*₀, *w*_a)

Scolnic et al. (2017)

Changing the CMB prediction for H_0 ?

Changing low-redshift expansion history **very** effective at shifting CMB prediction for $H_0...$

Growth of structure tensions?

Subaru Hyper Suprime-Cam (HSC), Dark Energy Survey (DES), Kilo Degree Survey (KiDS) Stage-3 weak lensing surveys all find lower values of combinations of σ_8 , Ω_m than *Planck*

Galaxy lensing Clusters Galaxy clustering CMB lensing

... all low compared to *Planck* predictions

McCarthy et al. (2018)

The future...

- Billions of dollars going into future cosmology observations (e.g., Stage-3+4 CMB, DESI BAO, Euclid BAO+WL, LSST WL, WFIRST BAO+WL)
- Will understanding of systematic uncertainties improve to let us take advantage of the improvements in statistical precision?
- Current tensions have motivated valuable work on systematics, how we assess statistical consistency, avoidance of biases (confirmation, etc.)

Conclusions

- Tension between *Planck* CMB results and distance ladder *H*₀ has persisted (currently around 3.6σ), despite improvements in both precision and robustness.
- There is some degree of internal tension in *Planck* power spectrum, but 2.7-3.5σ H₀ tension exists even without *Planck* (BAO plus other CMB data or BAO plus D/H).
- Challenging to improve agreement by modifying cosmological model without introducing some new tension (CMB, D/H, BAO, high-z SNe ~agree for ΛCDM)
- Various probes find lower structure amplitude (combination of σ₈, Ω_m) than *Planck*. Awaiting results of combined Stage-3 weak lensing analysis.