Overview of Beyond the Standard Model Phenomenology

Patrick Fox

LIGHTYLAR

Liste

SE Fermilab

8-12 Oct 2018, Cincinnati, OH, USA

The Standard Model Atoms 4.9% Dark matter 26.8% Dark energy 68.3%

18 parameters:

 $\alpha, \sin \theta_W, \alpha_S, \langle H \rangle, m_H, m_{e,\mu,\tau}, m_{u,d,s,c,b,t}, V_{CKM}(\theta_{12}, \theta_{13}, \theta_{23}, \delta)$

Why we (might) need BSM physics

- Neutrino masses
- •Baryogenesis
- Dark Matter
- •Inflation and cosmological constant/quintessence
- •Quantum gravity
- Explain anomalies...
- Fermion masses and mixings
- •Strong CP problem
- Hierarchy Problem
- •Gauge coupling unification
- •Explain anomalies…

Why we (might) need BSM physics

- Neutrino masses
- •Baryogenesis
- Dark Matter
- •Inflation and cosmological constant/quintessence
- •Quantum gravity
- •Explain anomalies… **Weak scale**

- Fermion masses and mixings
- •Strong CP problem
- Hierarchy Problem **Weak scale**
- •Gauge coupling unification
- Explain anomalies... **Weak scale**

Dark Matter

 \mathbf{O}^{\cdot} •Is dark i.e. neutral under SM (not coloured, or charged) elf \cdot _{the} elt مام \cdot cse •Non-relativistic at time of CMB •DM makes up 27% of the mass-energy of universe •Gravitates like ordinary matter, but is non-baryonic •Does not interact much with itself •Does not couple to massless particle •Long lived **NO SUCH PARTICLE IN SM**

sity n_{ohe}

 $O_{\mathcal{Z}^{\sim}}$ O_{36} $\sim_{O_{\cdot 55}}$ 0.34 O_{33}

 $\sqrt{\frac{1}{2}}70$

So far all probes have been gravitational in nature

Neptune discovered by wobble in orbit of Uranus —original DM!

Advance in Perihelion of Mercury needed new physics (general relativity) to explain it. (Originally thought to be planet Vulcan!)

What about other interactions?

Theories of Dark Matter

WIMP

- DM interacts through weak (or weak scale) couplings 1.77 8. Marsh, D. J. E. Axion cosmology. *Phys. Rep.* **643,** 1–79 (2016).
- Lee-Weinberg and Unitarity canstrain mass range W MW mlss Q EVS $\overline{}$. Gaskins, J. M. A review of particle data matter. *Contemp. Phys.* **57,** 496–525 (2016). \ldots λ
	- \cdot ~1 GeV $-\sim$ 10 TeV

SD
SD

G

• Usually consider a thermal relic **cross-section set by di!erent xenon-based experiments.** Limit curves from

WIMP

- DM interacts through weak (or weak scale) couplings 1.77 8. Marsh, D. J. E. Axion cosmology. *Phys. Rep.* **643,** 1–79 (2016).
- Lee-Weinberg and Unitarity canstrain mass range W MW mlss Q EVS $\overline{}$. Gaskins, J. M. A review of particle data matter. *Contemp. Phys.* **57,** 496–525 (2016). \ldots λ

$$
\cdot \sim 1 \text{ GeV} - \sim 10 \text{ TeV}
$$

SD
SD

 \overline{SO}

• Usually consider a thermal relic **cross-section set by di!erent xenon-based experiments.** Limit curves from

10^2 10³ **Dark sectors and direct detection**

WIMP mass $(GeV/c²)$

10^2 10³ **Dark sectors and direct detection**

WIMP mass $(GeV/c²)$

10^2 10³ **Dark sectors and direct detection**

WIMP mass $(GeV/c²)$

Hidden sector DM

- DM interacts through *new* mediators
	- •"dark photon", U-boson, Z', secluded mediator,….
	- dark Higgs

 \bullet

- pseudo scalars, ALPs
- •Portal interactions
- •Thermal relic, now can annihilate within the dark sector n the dark sector
Ig
- •Allows for lighter DM
- \cdot ~1 keV $-$ ~100 TeV \cdot Allows for lignter DM
 \cdot \sim 1 keV $-$ ~100 1
And for all dark ma
	- •Search for all dark sector particles
- Direct, indirect, collider, self-coupling · Direct, indirect, co

Hidden sector DM

• DM interacts through *new* mediators

$$
\frac{\epsilon}{16\pi^2}F'_{\mu\nu}B^{\mu\nu}_Y
$$

- •"dark photon", U-boson, Z', secluded mediator,….
- dark Higgs

 \bullet

- pseudo scalars, ALPs
- •Portal interactions
- •Thermal relic, now can annihilate within the dark sector n the dark sector
Ig
- •Allows for lighter DM
- \cdot ~1 keV $-$ ~100 TeV \cdot Allows for lignter DM
 \cdot \sim 1 keV $-$ ~100 1
And for all dark ma
	- •Search for all dark sector particles
- Direct, indirect, collider, self-coupling · Direct, indirect, co

Hidden sector DM

• DM interacts through *new* mediators

$$
\frac{\epsilon}{16\pi^2}F'_{\mu\nu}B^{\mu\nu}_Y
$$

- •"dark photon", U-boson, Z', secluded mediator,….
- dark Higgs $|\phi|H|^2 + |\phi|^2|H|^2$
- pseudo scalars, ALPs
- •Portal interactions

 \bullet

- •Thermal relic, now can annihilate within the dark sector n the dark sector
Ig
- •Allows for lighter DM
- \cdot ~1 keV $-$ ~100 TeV \cdot Allows for lignter DM
 \cdot \sim 1 keV $-$ ~100 1
And for all dark ma
	- •Search for all dark sector particles
- Direct, indirect, collider, self-coupling · Direct, indirect, co

 $\sqrt{2}$ --- α *T T* (NA48) A' ¹ ² $\sim \chi_2$ *p Z* γ *A* π^0, η \overline{y} , \overline{y} \overline{y} χ_2 Meson decay

Z A (LDMX, DarkLight, …) 0 *,* ¹ Bremsstrahlung

Crossing the Inelastic Frontier—Xenon100 & PandaX

Crossing the Inelastic Frontier—Xenon100 & PandaX

LLP: new detectors @ LHC

LP: new detectors @ LHC **LLP: new detectors @ LHC**

MilliQan MilliQan

- Models of DM have come a long way in 20 years **DM Outlook**
Models of DM have come a long way in 20 years while the Models of DM have come a long way in 20 years
- **• Result of vibrant experiment-theory interface**
- •Entering a new era in Dark Matter research, involving physics on many scales (nuclear, cond. matt., and atomic)
- **• Many possibilities, many search opportunities**
- **• Dark sectors possible (likely?) non-trivial dynamics**

No non-gravitational detection yet

advisor's DM

DM exists

The hierarchy problem

Hierarchy (Naturalness) problem

 $\mathcal{L}_2 = \pm \mu^2 |H|^2$

Why is μ so much smaller than M_{GUT} , M_{Pl} ?

Unlike fermions (and gauge bosons) no symmetry protects scalar mass parameter 1.Nature is fine-tuned (anthropics?) 2.The SM has no high scales (gravity?, unification?) 3.New dynamics/symmetries keeps mass scale low

The hierarchy problem

Hierarchy (Naturalness) problem

$$
{\cal L}_2=\pm \mu^2|I_\parallel|
$$

Why is μ sc

There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.

> —Mark Twain **(BSM model builder)**

Unlike fermions (and gauge bosons) no symmetry protects scalar mass parameter 1.Nature is fine-tuned (anthropics?) 2.The SM has no high scales (gravity?, unification?) 3.New dynamics/symmetries keeps mass scale low

New particles coupled to Higgs Usually have similar quantum numbers as the top, W, etc e.g. SUSY, little Higgs Strong constraints from LHC Twin Higgs resurgence—no coloured partners

The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indica

q ¹ with y *t* $\frac{H}{3}$ g^{$'$} u' + h.c.

[Chacko, Goh, Harnik]

 $\text{SM}_A \times \text{SM}_B \times \mathbb{Z}_2$

$\mathcal{L} \supset y \, Q_A H_A U_A^c + y \, Q_B H_B U_B^c$

Higgs is/a PNGB, and Higgs potential is Q(8) symmetric $16\pi^2$ $s/3$ $f(x) = f(x)$
 $f(x) = f(x)$ 9 4 *g*2 $\left(\frac{2}{2} + 10\lambda + 60\right)$ symmetric $|H'|$ $\left(\frac{2}{2} \right)$ $\mathcal{L} \sim y \, Q_A H U_A^c + y \, Q_B \int f - \frac{P}{2f}$ $\mathcal{L} \sim y \, Q_A H U_A^c + y \, Q_B$ $\left(f - \frac{|\hat{H}|^2}{2f^2}\right)$ $2f^2$ ◆ *Uc B*

$$
V=-m^2\left(H_A^{\dagger}H_A+H_B^{\dagger}H_B\right)+\lambda\left(H_A^{\dagger}H_A+H_B^{\dagger}H_B\right)^2
$$

Higgs portal between A and B sectors

- Higgs mixing and corrections to Higgs pheno at $\frac{v^2}{f^2}$
- Higgs invisible decay width to light B sector stuff

Are there any deviations in Higgs couplings? Already ruled out 4th generation (also direct searches)

New searches

Existing 2-body searches:

TABLE I. Existing two-body exclusive final state resonance searches at ^p*^s* = 8 TeV. The ? symbol indicates no

New searches

Existing 2-body searches:

Flavour anomalies *C^µ* ⁹ 1*.*56 [2*.*12, 1*.*10] [2*.*87, 0*.*71] 4*.*1

 L FUV observables

Table is a set of scenarios with \mathbf{r}_{max} TABLE I. Best-fit values and pulls for scenarios with NP in the Second Second Second Second Second Second Second
The NP in the NP in

$$
\mathcal{H}=-\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{\alpha_{em}}{4\pi}\Big(C_9^\mu\mathcal{O}_9^\mu+C_{10}^\mu\mathcal{O}_{10}^\mu\Big)+\text{h.c.}
$$

 τ _{be c}ho construction τ , which τ and τ The physics that generates these operators must be below that can contribute to *b* ! *s*`` transitions. Dipole oper- $1(11)$ and $1(11)$ cannot lead to violence \mathcal{S} lation of LFU and are therefore irrelevant for this work. A ooooo ihA chil \cap iflo Accessible at LHC if loop generated. However, \overline{a} the *Z*⁰ do not change the quark flavors. Any FCNC e↵ect induced by the *Z*⁰ must occur at loop level, through diagrams involving additional sources of flavor violation *e.g. W[±]* or *H[±]* bosons running in *e, µ*. We do not consider other dimension-six operators 100 TeV
Accoopible of ¹ HC if loop gene \overline{C} and \overline{C} cannot lead to violation lead to violation \overline{C} lation of LHC if loop appendent in this capacity is Γ Four-fermion contact in the containing scalar containing scalar contact in the current scalar current scalar containing scalar current scalar current scalar current scalar current scalar current scalar current scalar curre rotod 0*.*5 *Phe physics that generates these operators must be below* $\frac{d}{dt}$ $\frac{1}{2}$ ` 9 = (¯*s* $\frac{d}{dt}$ The physics that generates these operators must be below
100 TeV $\frac{1}{(\bar{s}^2 + \bar{s}^2)^2}$ Accessible at LHC if loop generated

[Kamenik,Soreq,Zupan; PF, Low, Zhang] Exercise [Kamenik, Soreq, Zupan; PF, Low, Zhang] (at CHARM-II and CCFR) to be near the SM value. The small cross section in the trident cross section in the tri

Flavour anomalies required, the copy of the *Cupan, FF, Low, Zhang*

No new flavour violation, a new U(1)' scale. 6.2 LHC dimuon resonance search for *Z*⁰

Flavour anomalies

New flavour violation, a new U(1)' or leptoquarks

Delivered Luminosity 2018

HL-LHC: √s = 14 TeV, L= 5x10³⁴ cm-2 s-1 (levelled) High Lumi/High Energy LHC

HL-LHC: √ s = 14 [TeV](https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TeV); L = 3 ab-1; **HE-LHC:** √ s = 27 [TeV;](https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TeV) L = 15 ab-1 (post 2040?)

will shed light on existing anomalies, find new ones? Will shed light on existing anomalies, find new ones? High lumi allows for novel search strategies LLP searches, new detectors, new analyses

Outlook

A better PDG for our students than we got from our advisors Exciting time on many fronts, chances to motivate new searches and new expts.

No guarantees, but that shouldn't stop us looking Still waiting for our generations "I.I. Rabi moment"

Outlook

A better PDG for our students than we got from our advisors Exciting time on many fronts, chances to motivate new searches and new expts.

No guarantees, but that shouldn't stop us looking Still waiting for our generations "I.I. Rabi moment"

Another diphoton resonance?

ATLAS diphoton Long standing LEP excess, Tevatron tth, CMS/

2HDM (type 1) with a light H Can it also strengthen EWPT?

Another diphoton resonance? angles. Normalizing to ^a *^m^H* ⁼ ⁹⁵ GeV, there are first those that scale with (*s*↵*/s*)², *Anothe*

Long stand mance? A more extensive a more economical scenario. In such a setup, going into regions of moderate-to-to-to-t FIG. 3. Contours of *f* ²

COLAS diphoton (*ZZ*⇤ \boldsymbol{J} **ATLAS diphoton 122 Mars of Series School Serve
32.27 MeV excess,
32.27 MeV 2010
32.27 MeV 2010
32.27 MeV 2010
32.27 MeV 2010 MeV 2010 2010 2010 2010 2021** vatron tth, CMS/ μ ng LEP excess, Tevalron (lii), UNIS/ Long standing LEP excess, Tevatron tth, CMS/

OHDM (tyne 1) with a light H type i) with a light H Can it also strengthen EWPT? 2HDM (type 1) with a light H