Probing the universe with high-energy neutrinos Tianlu Yuan for the IceCube Collaboration UW Madison/WIPAC IPA18 Cincinnati, USA October 12, 2018

Update to contained, high-energy sample finds two double-cascade events, possibly due to ν_{τ}

First evidence of a **source** of high-energy astrophysical neutrinos from a flaring blazar TXS 0506+056

High-energy, partially contained neutrino detected by IceCube with energy around **Glashow resonance**

Some terminology

Atmospheric shower

Conventional atmospheric: Parent particle is pion or kaon; longer lifetime

Prompt atmospheric: Parent particle contains a charm quark; short lifetime

Signal for neutrino oscillation measurements

Background for astrophysical neutrino searches

Astrophysical neutrinos as a window to our Universe

A neutrino telescope

Astrophysical neutrino flux harder than background

Energy useful as a discriminator

Need large-volume detector for PeV-scale neutrinos

South-Pole ice is extremely clear, why not use as detector medium

IceCube

A sense of scale

1 km³

1 Gton of ice

Each bubble centers on a PMT

10 GeV – 10 PeV

Detection principals

Neutrino interacts via weak force with targets in ice

• At IceCube energies, primarily deep-inelastic scattering (DIS) off nucleons

Nucleon breaks apart; outgoing particles may be charged Charged particles emit Cherenkov radiation detectable by PMTs

Event topologies

CC muon neutrino

$$\nu_{\mu} + N \rightarrow \mu + X$$

track (data)

angular resolution ~ 0.5° energy resolution ~ x2

NC or CC electron neutrino

$$\nu_e + N \to e + X$$

 $\nu_x + N \to \nu_x + X$

cascade (data)

angular resolution ~ 10° energy resolution ~ 15%

CC tau neutrino

 $\nu_\tau + N \to \tau + X$

"double-cascade" (simulation)

~2 expected in 6 years

Selected results from HESE with 7.5 years of data

High energy starting event (HESE) selection

Contained search at high energies

Cut on Q_{tot} > 6000 p.e.

Sensitive above 60 TeV

Outer layer acts as active veto of atmospheric muon *and* indirect veto of atmospheric neutrinos accompanied by sibling muons

Event distribution in HESE-7.5

103 events, with 60 events >60 TeV

Fitting performed for events above 60 TeV

Diffuse flux

Forward-folded fit in zenith and energy Best-fit SPL: $E^2 \Phi = 2.19 \times 10^{-18} \left(\frac{E}{100 \text{ TeV}}\right)^{-0.91} [\text{GeV cm}^{-2}\text{s}^{-1}\text{sr}^{-1}]$ Prompt atmospheric best-fit $\rightarrow 0$ Prompt 90% UL $\rightarrow 12.3$ * BERSS model Consistent with 6-yr result

The double cascade channel

PoS(ICRC2017)973

Flavor identification

Ternary-PID of cascades, tracks and double-cascades

Two double-cascade events

Could be due to v_{τ} or mis-id background; affects flavor interpretation

Simulation

Double-cascade event 1

Slight preference for double cascade over single cascade based on DOM-to-DOM charge distributions

No longer a double cascade when including bright DOMs

Dedicated studies ongoing

Double-cascade event 2

Strong preference for double cascade over single cascade based on DOM-to-DOM charge distributions

Remains a double cascade when including bright DOMs

Dedicated studies ongoing

Astrophysical flavor composition

New: non-zero best-fit for ν_{τ} component

Evidence for a source of highenergy astrophysical neutrinos

TXS 0506+056

IceCube-170922A

Evidence for a point source

Direction of IceCube-170922A consistent with TXS 0506+056 a known $\gamma\text{-ray}$ source

Significant excess seen by Fermi-LAT and MAGIC shortly after IC alert (3σ)

Historical IceCube data indicates independent **neutrino flare** in 2014-15 (3.5σ)

Time dependence is crucial!

13 ± 5 muon-neutrino tracks on clustered in space and time, E^{-2.1} spectrum

Summary: first evidence for very high-energy, astrophysical neutrino source. Implications for blazars as an origin of high-energy cosmic rays.

Possible Glashow resonance event

~6.3 PeV reconstructed energy

W-boson resonance

The channel: $\overline{v_e} + e^- \rightarrow W^-$

For at rest electron, require $E_{\nu} = 6.3 \ PeV$

Boosts neutrino cross section

Partially contained (PEPE) selection

BDT trained on 11 features to select high-energy cascades in outer layer of detector

Twice the effective area for probing Glashow resonance: $\overline{v_e} + e^- \rightarrow W^-$

W decays primarily hadronically

Hadrons then decay to lower energy muons

These muons travel ahead of Cherenkov wavefront, depositing early hits

The highest energy event in PEPE

The highest energy event in PEPE

Features: Early hits, reconstructed energy of 6.3 ± 0.7 PeV including statistical uncertainty and systematics due to bulk-ice only

charge per bin

Early muons

Hadronic cascade alone does not predict first-arrival times

Requires early muon

Helpful for directional constraints

Atmospheric muon background rejection

Can an atmospheric muon fake the event signature of PeV-scale cascade and GeV-scale muon?

Would require a PeV-scale energy loss over short distance

Extremely unlikely for ~6 PeV muon to travel ~20 m and be left with < 100 GeV

Energy remaining after 20 m

Atmospheric muon background rejection

Conservative estimate is to take the flux of all such muons intersecting the detector \rightarrow Numerically evaluated with MCEq and MMC

Preliminary estimate of such events ~1e-7 in 4.6 yrs, which corresponds to exclusion of CR hypothesis ~ 5σ

Extremely unlikely to be muon background

Glashow resonance vs Charged Current v_e

Early muons come from hadronic decay

CC v_e interactions are not purely hadronic \rightarrow different muon distributions

Most probable neutrino energy

Rely on MC to unfold from E_{dep} back to E_{ν}

Relative comparison of probabilities for GR/CC/NC

Astrophysical flux and implications

IceCube continues to consistently collect exciting new results!

Two double-cascade events, possibly due to v_{τ} , discovered

First evidence of a source of high-energy astrophysical neutrinos from a flaring blazar TXS 0506+056

A partially contained, high-energy neutrino has an energy ~6-7 PeV, around the Glashow resonance

Backups

Atmospheric neutrino rejection (uncorrelated)

PRD 90, 023009 (2014)

Atmospheric neutrino rejection (correlated)

Updated atmospheric neutrino passing fractions

Previous calculation (dashed) for a fixed set of approximations

- In-part analytically calculated
- In-part from **fit** to CORSIKA

New calculation (solid) allows for plug-and-play of different models

Effect of new passing fractions

MC templates for

- Conventional and prompt atmospheric neutrinos
- Atmospheric muons
- Isotropic, single-power law, diffuse astrophysical flux

New passing fractions affect template shapes

Bulk ice properties in brief

Bulk ice described by scattering and absorption coefficients as a function of depth \rightarrow these have been refined over time

Ice layers were found to be tilted [arXiv:1301.5361]

Ice was also discovered to be anisotropic [ICRC 2013, 0580]

Cascades

Above 60TeV:42 events

8 new events in 2016 season

4 new events in 2017 season

Tracks

Above 60TeV: 16 events

4 new events in 2016 season

1 new event in 2017 season

Double cascades

Above 60TeV: 2 events

0 new events in 2016 season

0 new events in 2017 season

