Determining the Majorana nature of neutrino through patterns of $|\Delta B|=2$ processes

Xinshuai Yan

Department of Physics and Astronomy University of Kentucky Lexington, KY

> 8-12 Oct, 2018, IPA2018 Cincinnati, OH

Based on two papers in collaboration with Susan Gardner:

[S.Gardner and X.Y., arXiv:1808.05288 and PRD 97 056008 (2018) arXiv:1710.09292]

B-L violation

In the Standard Model (SM), neither baryon number (B) nor lepton number (L) is conserved, but B-L is. Thus the observation of B-L violation reveal the existence of physics BSM.

B-L violation:

In lepton sector: Observation of neutrinoless double $(0\nu\beta\beta)$ decay shows that L is broken by two units. That is to say that neutrino has an effective Majorana mass.

- □ In quark sector:
 - Proton decay:
 - Has never been observed!
 - Impose severe constraints on new physics, e.g., proton life time for p → e⁺π⁰mode
 8.2 X 10³³ yr.
 [H. Nishino et al. (Super-K) (2009)]
 - Neutron-antineutron oscillation ---- Spontaneous. [Marshak and Mohapatra (1980)]
 - Nucleon-antinucleon conversion ---- Mediated by an external source.

[Susan Gardner and X. Y., PRD (2018)]

[J. Schechter and J. W. Valle (2012)]

1

Scalar-fermion interactions with no proton decay

[Arnold, Fornal, and Wise (2013)]

Possible interactions between scalar particle X and SM fermions:

Scalar	SM Representation	В	\mathbf{L}	Operator(s)	$[g_i^{ab}?]$
X_1	(1, 1, 2)	0	-2	$Xe^{a}e^{b}$	[S]
X_2	(1,1,1)	0	-2	$XL^{a}L^{b}$	[A]
X_3	(1,3,1)	0	-2	$XL^{a}L^{b}$	[S]
X_4	$(ar{6},3,-1/3)$	-2/3	0	XQ^aQ^b	[S]
X_5	$(ar{6},1,-1/3)$	-2/3	0	XQ^aQ^b, Xu^ad^b	[A,-]
X_6	(3, 1, 2/3)	-2/3	0	Xd^ad^b	[A]
X_7	$(ar{6},1,2/3)$	-2/3	0	Xd^ad^b	[S]
X_8	$(ar{6},1,-4/3)$	-2/3	0	Xu^au^b	[S]
X_9	(3, 2, 7/6)	1/3	-1	$X\bar{Q}^{a}e^{b}, XL^{a}\bar{u}^{b}$	[-,-]

E.g.,
$$g_1^{ab}X_1(e^ae^b)$$

[Arnold, Fornal, and Wise (2013) Susan Gardner and X. Y. (2018)]

Note these interactions do not break B and L !

Minimal interactions that break B and/or L

[Susan Gardner and X. Y. (2018)]

Quark level $n - \bar{n}$ oscillation

> There are 4 independent quark level $n - \bar{n}$ oscillation operators that respect SM gauge symmetry:

$$(O_1)_{RRR}, (O_2)_{RRR}, (O_3)_{LRR}, (O_3)_{LLR}$$

[Rao and Shrock (1982) W. Caswell et al (1983) M. Buchoff et al (2012)]

□ Note: M1 yields the operator $(\mathcal{O}_2)_{RRR}$, M2 yields $(\mathcal{O}_3)_{LLR}$, M3 yields $(\mathcal{O}_1)_{RRR}$.

Quark level
$$n - \bar{n}$$

oscillation operators
with SU(3) \otimes U_{em}(1).
$$\begin{bmatrix} (O_1)_{\chi_1\chi_2\chi_3} = [u_{\chi_1}^{\top \alpha} C u_{\chi_1}^{\beta}][d_{\chi_2}^{\top \gamma} C d_{\chi_2}^{\delta}][d_{\chi_3}^{\top \rho} C d_{\chi_3}^{\sigma}](T_s)_{\alpha\beta\gamma\delta\rho\sigma}, \\ (O_2)_{\chi_1\chi_2\chi_3} = [u_{\chi_1}^{\top \alpha} C d_{\chi_1}^{\beta}][u_{\chi_2}^{\top \gamma} C d_{\chi_2}^{\delta}][d_{\chi_3}^{\top \rho} C d_{\chi_3}^{\sigma}](T_s)_{\alpha\beta\gamma\delta\rho\sigma}, \\ (O_3)_{\chi_1\chi_2\chi_3} = [u_{\chi_1}^{\top \alpha} C d_{\chi_1}^{\beta}][u_{\chi_2}^{\top \gamma} C d_{\chi_2}^{\delta}][d_{\chi_3}^{\top \rho} C d_{\chi_3}^{\sigma}](T_s)_{\alpha\beta\gamma\delta\rho\sigma}, \\ (T_s)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\gamma}\epsilon_{\sigma\beta\delta} + \epsilon_{\sigma\alpha\gamma}\epsilon_{\rho\beta\delta} + \epsilon_{\rho\beta\gamma}\epsilon_{\sigma\alpha\delta} + \epsilon_{\sigma\beta\gamma}\epsilon_{\rho\alpha\delta} \\ (T_s)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\sigma\alpha\beta}\epsilon_{\rho\gamma\delta}. \end{bmatrix}$$
[Rao and Shrock (1982)]

Mechanisms of $0\nu\beta\beta$ decay

[Bonnet et al (2013)]

(a)-(c): A light neutrino is exchanged --- "*long-range*" diagrams;
 (d): Mediated by heavy particles --- "*short-range*" diagram.

Only models A, B, and C can produce $\pi^-\pi^- \rightarrow e^-e^-$ decay, which correspond to the second case of decay topology "T-II-3" in Bonnet et al (2013).

Processes of interest generated by the models

We list the $|\Delta L| = 2$ and $|\Delta B| = 2$ processes generated by the models in which only first-generation fermion are involved.

$n\bar{n}$	$\pi^-\pi^- ightarrow e^-e^-$	$e^-p o \bar{\nu}_{\mu,\tau} \bar{n}$	$e^-p ightarrow ar{ u}_e ar{n}/e^+p$	$e^-p ightarrow e^+ \bar{p}$
M1	A	M5	M7	M10
M2	B(*)	M6	M11	M12
M3	$C^{(*)}$	M13	M14	M15
			M16	

(*) indicates that a weak isospin triplet of $|\Delta L| = 2$ processes can appear.

Patterns of $|\Delta \mathbf{B}|=2$ & Majorana neutrino

$n\bar{n}$	$\pi^-\pi^- \to e^-e^-$	$e^-p o \bar{\nu}_{\mu,\tau} \bar{n}$	$e^-p ightarrow ar{ u}_e ar{n}/e^+p$	$e^-p ightarrow e^+ \bar{p}$	Model	$nar{n}?$	$e^-n \to e^-\bar{n}?$	$e^- p \to \bar{\nu}_X \bar{n}?$	$e^-p \rightarrow e^+ \bar{p}?$	0 uetaeta ?
M1	A	M5	M7	M10	M3	Y	Ν	Ν	Y	Y[A]
M2	B(*)	M6	M11	M12	M2	Y	Y	Y	Y	Y [B]
M3	C ^(*)	M13	M14	M15	M1	Y	Y	Y	Ν	? [D]
			M16		_	Ν	Ν	Y	Y	? [C?]

□ We have showed that $e^-n \to e^-\overline{n}$ can not appear if $n - \overline{n}$ oscillation is mediated through $(\mathcal{O}_1)_{RRR}$. → Distinguish M3 from M1 and M2

One example: No $e^-n \rightarrow e^-\overline{n}$ & Yes $n\overline{n}$,

- M3 has scalar content X_7 and X_8 ;
- $e^-p \rightarrow e^+\bar{p}$ only => M10, M12, or M15. Common scalar content: X_1

M3	X ₇ X ₇ X ₈	M10	$X_7 X_8 X_8 X_1$
		M12	$X_5 X_5 X_8 X_1$
А	$X_1 X_8 X_7^{\dagger}$	M15	$X_4 X_4 X_8 X_1$

[Susan Gardner and X. Y., PRD (2018)]

Summary

- Motivated by search for new physics, we explore simple BSM scalar models with B, L, and B-L violation. For phenomenological viability, we permit no proton decay for these models.
- Various $|\Delta B| = 2$ and $|\Delta L| = 2$ processes, such as $n\bar{n}$ oscillation and nucleon-antinucleon conversion and $0v\beta\beta$ decay, can be studied within these models.
- We show that the observation of $n\overline{n}$ oscillations and of particular nucleon-antinucleon conversion processes can reveal the Majorana nature of the neutrino.

Backup Slides

The two basic tree-level topologies realizing $d=9 \ 0 \nu \beta \beta$ decay operator

Cross Section Estimate Experimental limits can be translated to scalar-mass-coupling exclusion plots (cf. dark photons!)

scalar couplings [4, 56–59]. Models that support $e^-p \rightarrow e^+\bar{p}$ have low-energy operators whose quark parts correspond to those found in $n - \bar{n}$ oscillations under $u \leftrightarrow d$ exchange. Exploiting this and a MIT bag model [60, 61] computation of $\langle \bar{n} | (\mathcal{O}_1)_{RRR} | n \rangle$ [46, 62] yields

$$\sigma \sim 1.5 \times 10^{-5} (g_7^{11})^6 (\lambda_8 g_1^{11})^2 \left(\frac{5 \,\mathrm{GeV}}{M_{X_7}}\right)^{12} \left(\frac{1 \,\mathrm{GeV}}{M_{X_1}}\right)^4 \mathrm{ab}$$
 (6)

in model M8 for an electron beam energy of 155 MeV with a fixed target [63]. A broad range of possible scalar masses and couplings exists.

[SG & Xinshuai Yan, arXiv: 1808.05288]