Relativistic particle scattering and Big Bang Nucleosynthesis

Atul Kedia

PhD advisor: Prof. Grant Mathews Collaborators: Dr. N. Sasankan, Dr. M. Kusakabe

11th Oct. 2018

IPA 2018 @ Cincinnati, 8th -12th Oct 2018

Intro to "Big Bang Nucleosynthesis" (BBN)

Intro to "Big Bang Nucleosynthesis" (BBN)

Motivation

Cosmological Lithium problem: Abundance of ⁷Li predicted = $3 \times {}^{7}Li$ observed (4.5x10⁻¹⁰) (1.6x10⁻¹⁰)

Possible that particle/astrophysical/Nuclear/thermal physics processes not understood.

Reaction rates between two species

$$n_1 n_2 < \sigma(v)v >= n_1 n_2 \int v \sigma(v) f(v) dv$$

Reaction rates between two species

$$n_1 n_2 < \sigma(v) v >= n_1 n_2 \int v \sigma(v) f(v) dv$$

f(v) : Distribution of the relative velocities of the two nuclei.

Traditionally assumed to be Maxwell-Boltzmann distribution, obtained by approximating Fermi-Dirac.

Thermalization of (charged) nuclei

- At BBN, Nuclei are surrounded by e^+e^- and photons.
- Nuclei thermalize by interacting with e⁺e⁻
- f(v) should be influenced by these interactions

e⁺e⁻ are relativistic
 during BBN and hence follow
 Maxwell-Jüttner distribution
 (i.e. relativistic Maxwell
 Boltzmann distribution)

T		$\frac{n_{\pm}}{n_{\gamma}}$	$\frac{\sigma_{\pm}}{\sigma_{\gamma}}$		$\frac{\Gamma_{\pm}}{\Gamma_{\gamma}}$
T_9	MeV		$\sigma_{\pm} = \pi r_D^2$	$\sigma_{\pm} = $ Mott X-sec.	$\sim rac{n_{\pm}\sigma_{\pm}}{n_{\gamma}\sigma_{\gamma}}$
11.6	1	1.43	5×10^{4}	10^{5}	10^{5}
1.16	0.1	0.102	10^{7}	10^{5}	10^{4}
0.116	0.01	10^{-13}	2×10^{28}	10^{29}	10^{15}

Simulated thermalization with e⁺e⁻

Nuclei doing random walks by scattering off e^+e^-

Simulated thermalization with e⁺e⁻

Energy distribution for Nuclei

- = Energy distribution of e⁺e⁻
- = Maxwell-Jüttner distribution

Transform this M-J distribution to v-space(f(v)), update reaction rates and BBN yields.

BBN Yields

Unfortunately, this doesn't solve the Li⁷ problem, it worsen's it. But, it is a correction to be accounted for.

Deuterium and Lithium disagree with observational constraints.

"Relativistic Electron Scattering and Big Bang Nucleosynthesis" Sasankan, Kedia, Kusakabe, Mathews [Submitted]

Summary

⁷Li problem \rightarrow Our research begins: Question: How does a nucleus thermalize?

- Interacts with surroundings
 - $\circ \quad \text{Mostly } e^+e^-, \, \gamma$
 - $\circ \quad \text{Interacts with } e^+e^-$
- e⁺e⁻ follow M-Jüttner, not M-Boltzmann
- Simulate thermalization with e⁺e⁻
- Observed distribution f_{Nulcei}(E) = f_{e+e-}(E) = M-Jüttner distribution
 ⇒ obtain f(v) ⇒ update reaction rates ⇒ update BBN yields.

Lithium Problem is probably really a BBN problem

Thank you!

Velocity profile

Maxwell-Jüttner distribution

$$f(\gamma) = \left(\frac{\gamma^2 v m_e}{kT K_2(m_e c^2/kT)}\right) \frac{1}{\exp\left[(E_T \pm \mu)/kT\right] + 1}$$

Relative velocity dist. in terms of nuclear velocity dist.

$$f^{
m rel}(oldsymbol{v};T) = \int doldsymbol{V} [f(oldsymbol{v}_1)f(oldsymbol{v}_2)]_{oldsymbol{v}}$$

"Relativistic Electron Scattering and Big Bang Nucleosynthesis" Sasankan, Kedia, Kusakabe, Mathews, PRL[Submitted]. ArXiv preprint : <u>https://arxiv.org/abs/1810.05976</u>