

The Ohio State University

DUNE as the next-generation solar neutrino experiment [arXiv: 1808.08232] Guanying Zhu

Collaborators: Francesco Capozzi, Shirley Li, John Beacom

Solar & reactor tension - new physics?

Guanying Zhu (OSU)

• <u>Reactor</u>: antineutrino, vacuum oscillation

• <u>Solar</u>: neutrino, matter-enhanced mixing

Guanying Zhu (OSU)

Deep Underground Neutrino Experiment

- 4 10-kton liquid argon TPC modules
- 2 modules deployed by 2024
- Detection channels:

charged current $\nu_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$

elastic scattering $\nu_e + e^- \rightarrow \nu_e + e^ \nu_{\mu,\tau} + e^- \rightarrow \nu_{\mu,\tau} + e^-$

Power of DUNE for solar physics, Part I

Guanying Zhu (OSU)

Isolate sin^2 with two channels

Power of DUNE for solar physics, Part II

 $\Delta P(\Delta m_{21}^2) \propto E_{\nu}$

Guanying Zhu (OSU)

Isolate dm² with day-night

- Earth matter effect: P_night > P_day
- DUNE probes this difference efficiently Because: $\nu_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$

• Highlight higher E_{ν}

• $T_e = E_{\nu} - Q - \Delta E$

Huge statistics

Solar neutrinos vs. backgrounds

Backgrounds: cosmic-ray muons

Guanying Zhu (OSU)

Zhu et al., in prep

Backgrounds: radioactivity neutrons

Zhu et al., in prep

DUNE 100-yr-kton exposure

In addition, 8B flux 2.5%, hep 11% Guanying Zhu (OSU)

Conclusions — DUNE is required

Solar neutrinos

Successful past; and exciting future

DUNE would make crucial contributions

• We show such potential; significant but realistic new efforts would be required

