

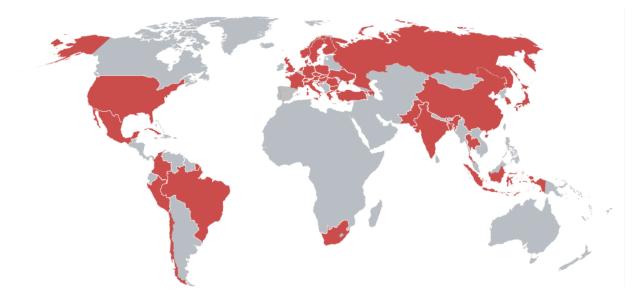
ALICE Status

F Antinori

44th ALICE RRB, 25 April 2018

Contents

- Collaboration news
- News from Point 2
- Computing update
- Physics update
- Upgrades update
- Conclusions

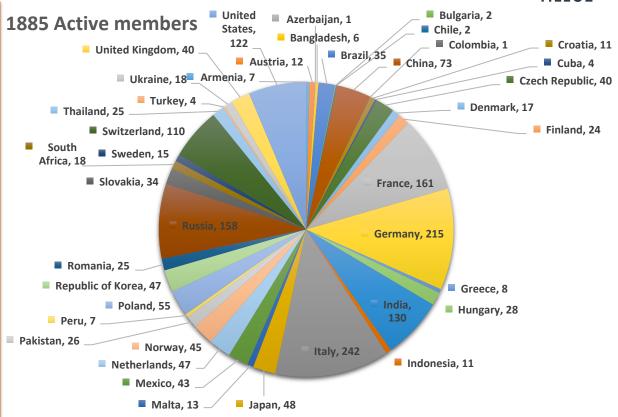


Collaboration news

Participating Institutes (1992-2018) 176 INSTITUTES – 41 COUNTRIES

- new member institute: Università di Foggia (Italy)
- ongoing discussions with several groups
 - Bolivia, Chile, China, India, Kazakhstan, Malaysia

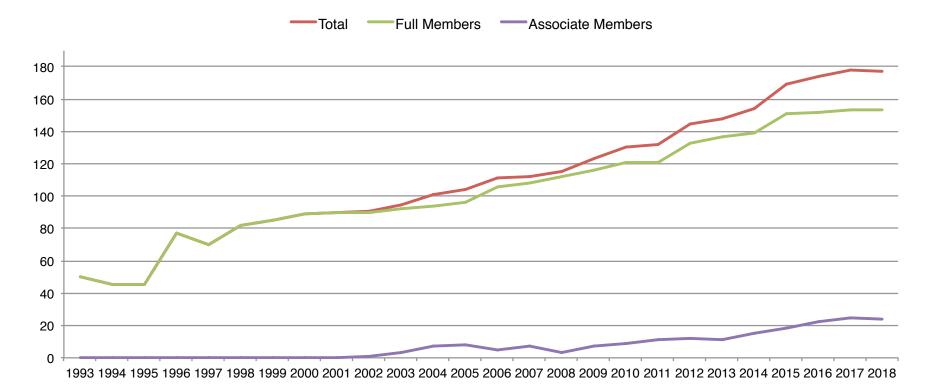
FA | ALICE RRB | 25 April 2018


Source: Alice Collaboration data base, April 2018

The ALICE Collaboration

History of the ALICE Experiment:

- 1990-1996 Design
- 1992-2002 R&D
- 2000-2010 Construction
- 2002-2007 Installation
- 2008 -> Commissioning
- 4 TP addenda along the way: 1996 Muon spectrometer 1999 TRD 2006 EMCAL 2007 DCAL
- 2012 Lol for the Upgrade
- 2012-2014 R&D
- 2014-2016 Procurement/Fabrication
- 2016-2017 Integration, precommissioning
- 2018-2019 Installation, commissioning
- 2019-2020 Staged deployment of O2



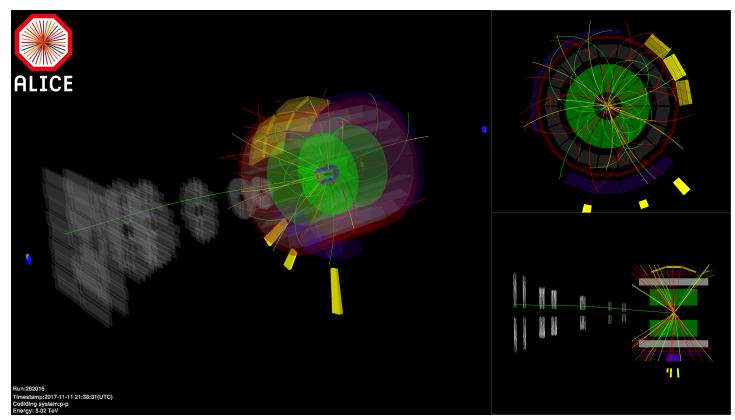
Source: Alice Collaboration data base, April 2018

ALICE

Participating Institutes (1992-2018)

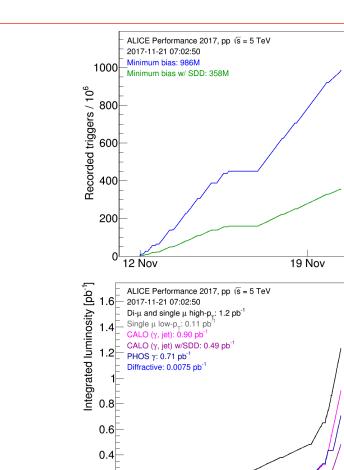
FA | ALICE RRB | 25 April 2018

New appointments


- Run Coordinator: Kristjan Gulbrandsen (Copenhagen)
- Deputy Run Coordinator: Taku Gunji (Tokyo)
- Editorial Board: Grazia Luparello (Trieste)
- Editorial Board: Cvetan Cheshkov (Lyon)
- Conference Committee Member: Mateusz Ploskon (Berkeley)
- New PWG Conveners
 - Light Flavours: Stefania Bufalino (Politecnico di Torino)
 - Photons: Dmitry Peresunko (MEPHI Moscow)

News from Point 2

Since last RRB: 5.02 TeV pp run

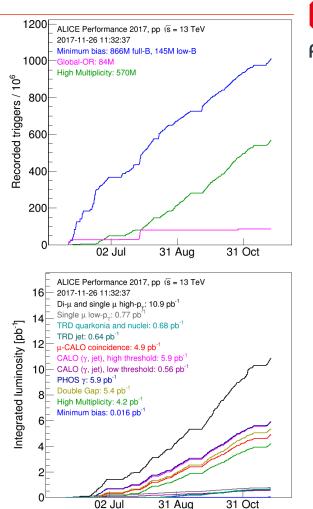


FA | ALICE RRB | 25 April 2018

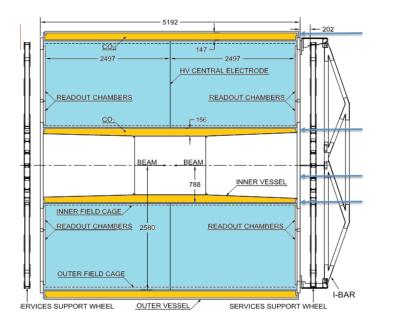
Data taking @ 5.02 TeV

- reference data for low-p_T physics
 - same √s as Pb-Pb, p-Pb
- 11 21 November 2017
- nominal running conditions:
 - β* = 10 m
 - instantaneous lumi: 1 Hz/µb
 - dipole/solenoid polarity: -/-
- trigger menu
 - min-bias + muon, calorimeters
- mission completed!
 - 986M min-bias events
 - 1.2 / pb muon triggers
 - 0.9 / pb calorimeter triggers

0.2

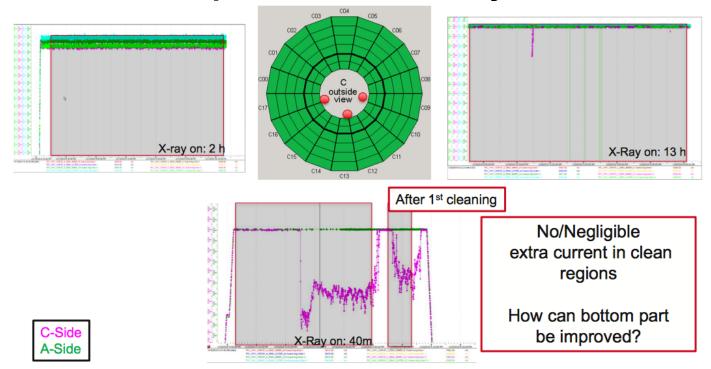

12 Nov

19 Nov

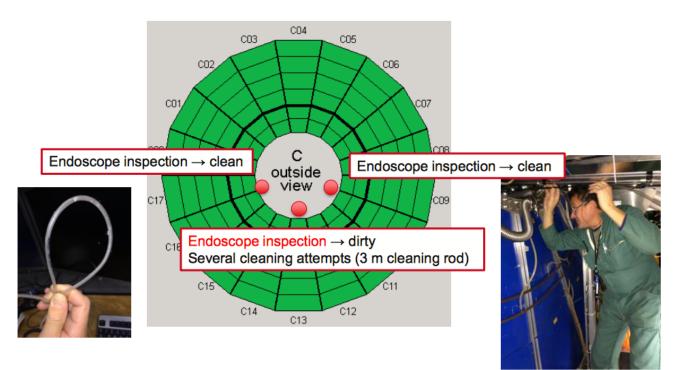

Data taking @ 13 TeV – wrap-up

- nominal running conditions:
 - β* = 10 m
 - instantaneous lumi: 2.6 Hz/µb
 - pile-up ~ 1.6%
- rich trigger menu
 - calos, muons, TRD, diffractive, hi-mult, min-bias, ...
- goals met:
 - 10.9/pb muons
 - 5.9/pb central barrel
 - 866M min-bias full B field events
 - 570M high-multiplicity events

Cleaning of TPC field cage insulation volume Main activity during YETS



leakage current observed at high rates: suspect dust in the insulation volume


Effect can be reproduced with X-rays

• X-ray irradiation shows leakage currents at the bottom, where dust has accumulated

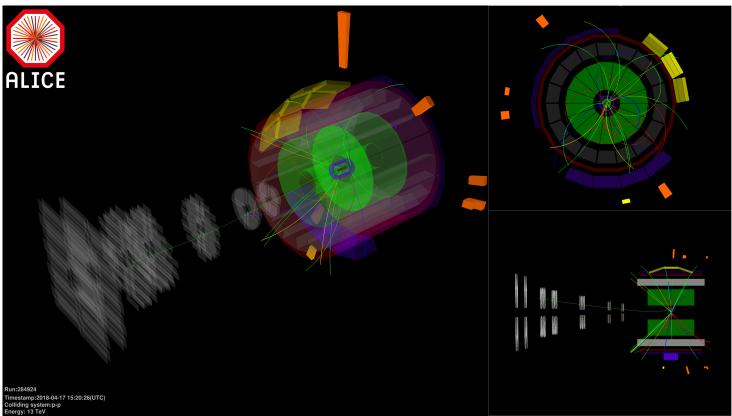
Endoscope cleaning campaign

access only through 8 mm holes!

Cleaning works!

(example)

before cleaning


after cleaning

- leakage currents significantly reduced by cleaning
- full cleaning campaign scheduled for LS2

Now: pp @ 13 TeV, 2018 Campaign

FA | ALICE RRB | 25 April 2018

Data taking in 2018

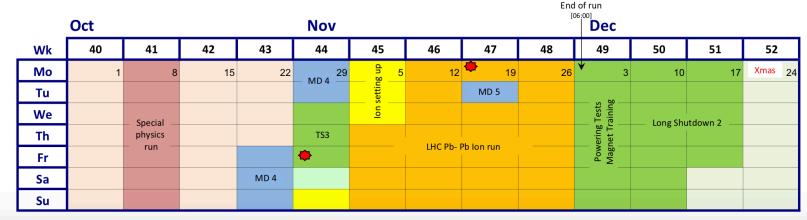
Next schedule

Sep

	Start Beam First Stak				Collisi	ms ons with 3 Inches		Collisions with 1200 bunches			June				
Wk	14		15		16	17	18	19	20	21	22	23	24	25	26
Мо	Easter	2	9	•	16	¥ 23	30	7	14	Whitsun 21	28	4	11	18	_{VdM} 25
Tu	Machine			3 bi	unches	Scrubbing	1st May								program
We	Ma				Mnches									TS1	
Th	Ň	¥			unches			Ascension							
Fr					S testbed work	commiss intensity	ramp up	▼					— MD1 —		β*= 90 m
Sa															run —
Su			3	39	bunche	s									

- stable beams came 1 week early
- intensity ramp-up ongoing
- now at 339 bunches in the machine

ALICE


Data taking in 2018: pp

	Start Beam Commissioning			Collisions with 3 bunches		Collisions with 1200 bunches		June							
Wk	14	15		16	17	18	19	20	21	22	23	24	25	26	
Мо	Easter	2	9	16	¥ 23	30	7	14	Whitsun 21	28	4	11	18	VdM 25	
Tu	Machine				Scrubbing	1st May								program	
We	_		l ommissi		*								TS1		
Th	*	'	with bea		Interle commissi		Ascension								
Fr			CN	MS testbed work	intensity		*					MD 1		β*= 90 m	
Sa														run —	
Su	I														
	July			·		Aug				·	Sep				
Wk	July 27	28		29	30	Aug 31	32	33	34	35	Sep 36	37	38	39	
Wk Mo	27	28	9	29 16	30 23		32	33 13		35 27			38 17		
	27 β*= 90 m		9		23	31					36				
Мо	27		9			31					36				
Mo Tu	27 β*= 90 m		9		23	31					36		17		
Mo Tu We	27 β*= 90 m		9		23	31					36 3		17		
Mo Tu We Th	27 β*= 90 m		9		23	31					36 3	10	17		

• goals: 15/pb muon triggers, 7/pb calo triggers, 1.1 Gemin-bias, 650 M high multiplicity

ALICE

Data taking in 2018: Pb-Pb

- stress on central (head-on) collisions
- 300 M central + 240 M min-bias
- 890/µb muon triggers
- 240/µb calo/UPC triggers
- largest data set so far \rightarrow ~ 30% ALICE data until LS2 to be collected this year!

Computing update

٠

٠

Computing

- all 2017 data replicated to T1s, calibrated and processed
- completed reprocessing of 2015, 2016 data

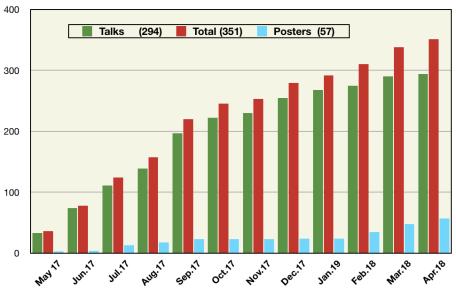
2018 request reduced to match pledges

2019 request dominated by Pb-Pb 2018

- significant effort in reduction of data footprints
 - event size compression
 - improved: $5 \rightarrow 8.5$ since start of Run 2
 - disk space management
 - 7.5 PB freed

ALICE			2017		20	18	2019			
		CRSG recomm	Pledged	Used	CRSG recomm.	Pledged	Request	2019 req. /2018 CRSG	C-RSG recomm.	
	Tier-0	29	292	2 389	350	350	430	123%	430	
	Tier-1	25	6 235.	5 295	307	279.5	365	119%	365	
CPU	Tier-2	36	6 279.	6 299	312.9	312.9	376	120%	376	
CPU	HLT	n/a	n/a	26	n/a	n/a	n/a	n/a	0	
	Total	91	4 807.	1 1010	969.9	942.4	1171	121%	1171	
	Others			39						
	Tier-0	22	.4 22.4	4 19.3	26.2	26.2	34.3	131%	34.3	
Disk	Tier-1	25	.4 21.8	8 18.245	30.5	30.4	37.9	124%	37.9	
DISK	Tier-2	31	.4 22.	7 20.06	29	29	33.9	117%	33.9	
	Total	79	.2 66.9	9	85.7	85.6	106.1	124%	106.1	
	Tier-0	36	.9 36.9	9 29.7	49.1	49.1	44.2	90%	44.2	
Tape	Tier-1	30	.9 30.	6 22.3	40.9	42.2	37.7	92%	37.7	
-	Total	67	.8 67.	5 52	90	91.3	81.9	91%	81.9	

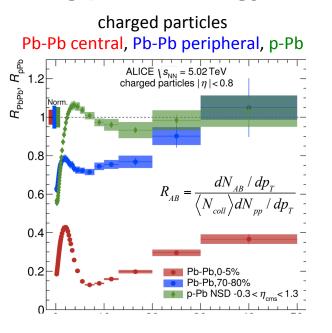



Physics update

Physics output

- going strong!
 - 205 papers on arXiv
 - averaging 48 citations (excluding self-cites)
 - several hundred conference presentations each year

ALICE Conference Committee (cumulative): May 2017 - Apr. 2018

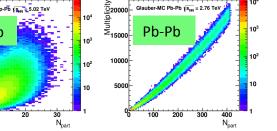


Some recent physics results...

Nuclear modification factors at high p_T Measuring parton energy loss in the QGP (latest results)

ALICE, arXiv:1802.09145

- collective effects in p-Pb
 - long-range correlations (v₂)
 - mass-dependence similar to Pb-Pb
 - stangeness enhancement pattern
- but still no evidence of jet quenching
 - system size, hence effect, smaller
 - but some predictions of sizeable effect, e.g.: Zakharov, J Phys G 41 (2014) 075008, arXiv:1311.1159
 Z B Kang et al, Phys Rev C92 (2015) 054911, arXiv:1507.05987
 - dependence on event activity is important!

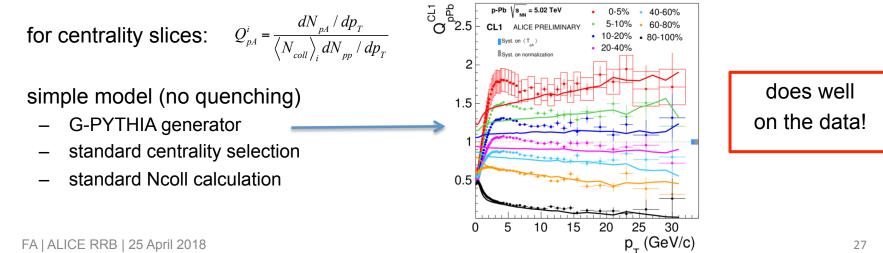

AI TCF

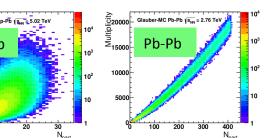
Issue: normalisation for p-Pb centrality classes

- no issue for min-bias p-Pb: $R_{pA} = \frac{dN_{pA}/dp_T}{\langle N_{cau} \rangle dN_{cau}/dp_T} = \frac{d\sigma_{pA}/dp_T}{A \cdot d\sigma_{pa}/dp_T}$
- but as soon as one slices on centrality \rightarrow biases
 - multiplicity fluctuations, jet / jet veto
 - fundamental reason: correlation multiplicity <--> geometry much broader than in Pb-Pb

Multiplicit

J O²2.5 40-60% for centrality slices: $Q_{pA}^{i} = \frac{dN_{pA}/dp_{T}}{\langle N_{mR} \rangle dN_{m}/dp_{T}}$ 60-80% CL1 ALICE PRELIMINAR -80-100% 20-40% simple model (no quenching) 1.5 **G-PYTHIA** generator standard centrality selection standard Ncoll calculation 0.5 25 30 5 10 15 20 n p_ (GeV/c)



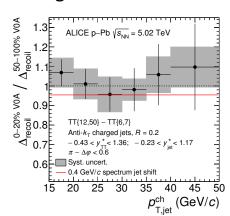


Issue: normalisation for p-Pb centrality classes

- no issue for min-bias p-Pb: $R_{pA} = \frac{dN_{pA}/dp_T}{\langle N_{out} \rangle dN_{m}/dp_T} = \frac{d\sigma_{pA}/dp_T}{A \cdot d\sigma_{pD}/dp_T}$
- but as soon as one slices on centrality \rightarrow biases
 - multiplicity fluctuations, jet / jet veto
 - fundamental reason: correlation multiplicity <--> geometry much broader than in Pb-Pb

Multiplici

FA

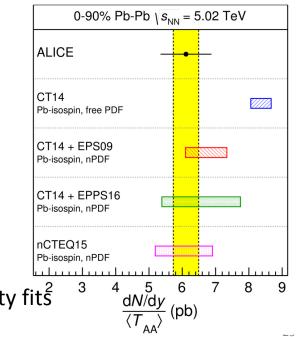

Different approach: self-normalised coincidence

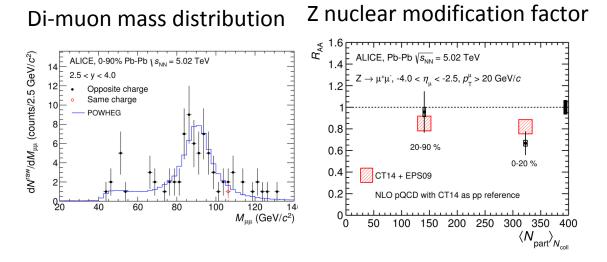
- semi-inclusive recoil-jet distribution
- jets recoiling against a trigger high-pT hadron
- in different p-Pb "centrality" regions
- in order to subtract uncorrelated combinations:

 Δ_{recoil} = high-p_T trigger (12 – 50 GeV) – low-p_T trigger (6-7 GeV/c)

- $\Delta_{\rm recoil} \left({\rm GeV}/{c}
 ight)^{-1}$ ALICE p-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0-20% ZNA Anti- $k_{\rm T}$ charged jets, R = 0.4 \rightarrow 10 $-0.43 < y_{\tau\tau}^* < 1.36; -0.03 < y_{iot}^* < 0.96$ $\pi - \Delta \varphi < 0.6$ • TT{12,50} 10⁻² Integral TT{12,50} : 1.84 and TT{6,7} Integral TT{6,7} : 1.83 10⁻³ Δ_{recoil} ($C_{\text{Ref}} = 0.94$) ${\sf d} p_{{\sf T}^{\sf iat}}^{\sf reco,ch} \, {\sf d} \eta_{\sf jet}$ d²N_{jets} 20% V0A 10⁻⁵ $\overline{N}_{\text{trig}}$ Statistical errors only 0 10 20 50 60 70 80 30 (GeV/c)
 - divide central/peripheral
 → no significant modification

0001

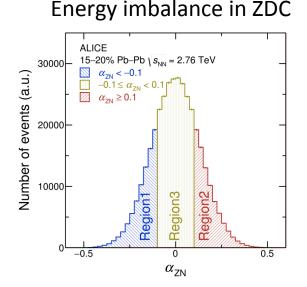


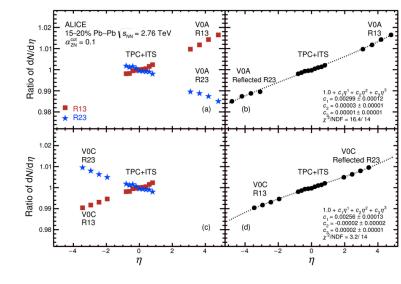

ALICE, arXiv:1712.05603

Z⁰ boson production in Pb-Pb Initial state: quark density

ALICE, Phys. Lett. B 780, 372

Comparison to theory with/without nuclear modification


Sensitive to quark, gluon density in the nucleus Yield suppressed by ~30%, in agreement with nuclear density fits²


FA | ALICE RRB | 25 April 2018

Exploring the initial state with energy imbalance

Rapidity spectra ratios

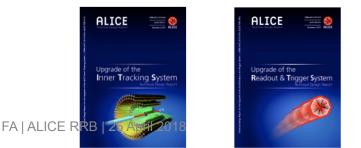
Select asymmetric collisions Using spectator nucleons

Longitudinal asymmetry in the initial state leads to asymmetry in the distribution of produced particles

Quark Matter 2018

- 13-19 May (starts in 2.5 weeks!)
 - the "large attractor"
 - biggest conference in the field
- ALICE approval sessions ongoing
- 75 new results being processed now!

Update on upgrades


ALICE upgrades

Main physics goals

- study heavy quark interaction in QCD medium
 - $\rightarrow\,$ heavy flavour dynamics and hadronisation at low ${\rm p_T}$
- study charmonium regeneration in QGP

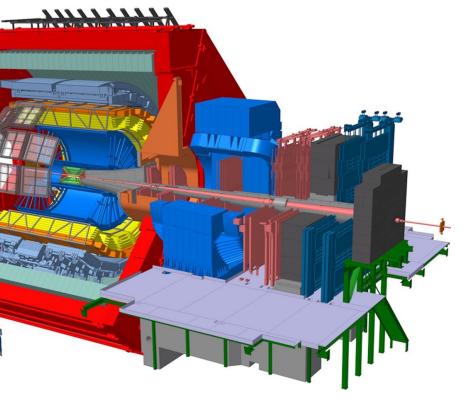
 \rightarrow charmonium down to zero \mathbf{p}_{T}

- chiral symmetry restoration and QGP radiation
 - \rightarrow vector mesons and virtual thermal photons (di-leptons)
- production of nuclei in QGP
 - \rightarrow high-precision measurement

ALICE

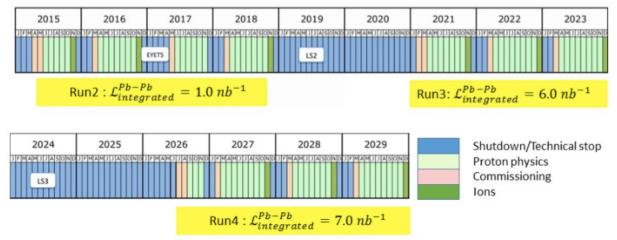
Upgrade of the

ALICE Experiment



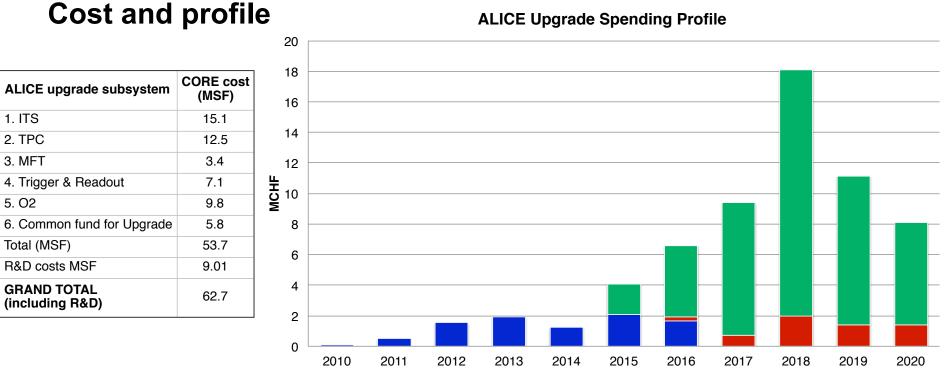
ALICE upgrades

Layout


- New Inner Tracking System (ITS)
 - MAPS: improved resolution, less material, faster readout
- New Muon Forward Tracker (MFT)
 - vertex tracker at forward rapidity
- New TPC Readout Chambers
 - 4-GEM detectors
- New trigger detectors (FIT, AD)
 - + centrality, event plane
- Upgraded read-out for TOF, TRD, MUON, ZDC, EMCal, PHOS, integrated Online-Offline system (O²)
 - record minimum-bias Pb-Pb data at 50 kHz (currently <1 kHz)

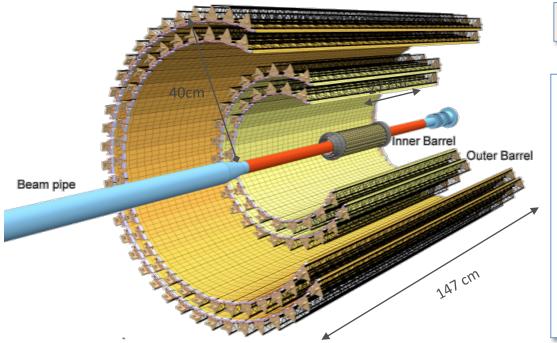
ALICE upgrades

Timeline


- LS2:
 - LHC injector upgrades, Pb-Pb rate → 50 kHz (now ~10 kHz)
 - ALICE upgrades
- Run 3 + Run 4:
 - experiments request > 10/nb (ALICE: 10/nb + 3/nb at 0.2 T)
 - in line with latest projections from machine group

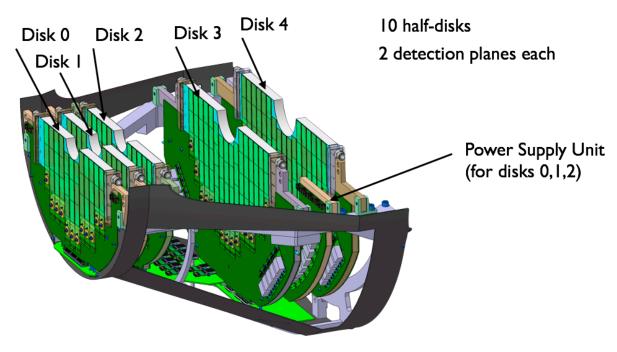
FA | ALICE RRB | 25 April 2018

ALICE UPGRADE



R&D Common Infrastructure CORE

ITS Upgrade



Based on MAPS

7-layer geometry (23 – 400mm), $|\eta| \le 1.5$) 10 m² active silicon area (12.5 G-pixels) Pixel pitch 28 x 28 μ m² Spatial resolution ~5 μ m Power density < 40mW / cm² Material thickness: ~0.3% / layer (IB) Max particle rate: 100 MHz / cm²

New Muon Forward Tracker

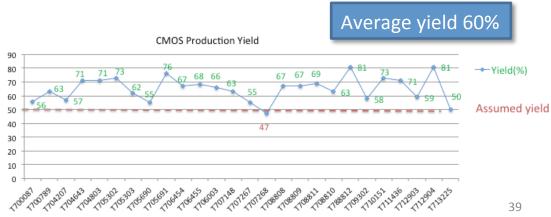
- new Si pixel tracker
 - same technology as ITS
- in front of muon absorber
 2.35 < η < 3.6
- 280 ladders
 - 2 to 5 sensors each
- 928 pixel sensors (0.4 m²)
 - ~ 5% of ITS surface

0.3 pJ / bit

2 x 2 pixel volume

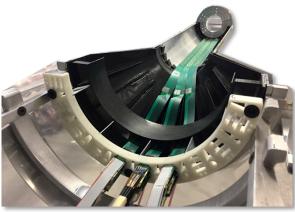
C_{in}≈5 fF

nolithic Pixel Chip


CMOS production completed

Production Status	Nr. wafers	Nr. chips
FINISHED	~1200	~55000

Series test ongoing: ~40% done



Q_{in} (MIP) ≈ 1300 e 🖙 V ≈ 40mV

HIC and Stave Production



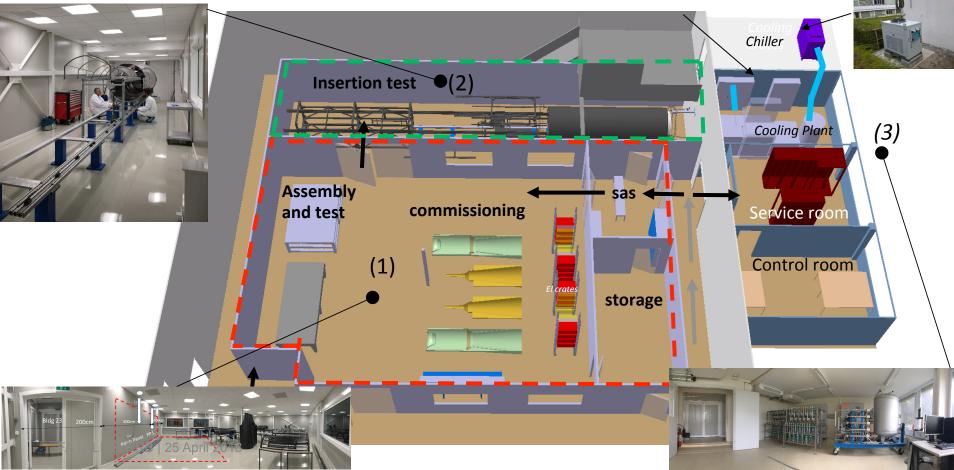
HIC Production (CERN, BARI, Liverpool, Pusan, Strasbourg, Wuhan)

- Production is progressing well (20% done) in all sites, will continue until Feb 2019
- Production yield: 82%, in line with projected value

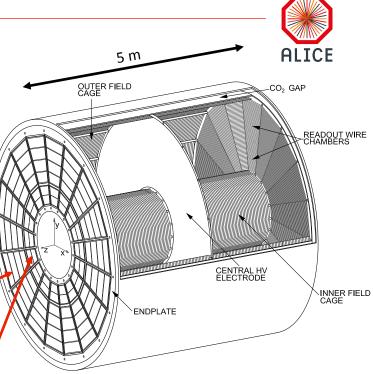
Stave Production (Berkeley, CERN, Daresbury, Frascati, Nikhef, Torino)

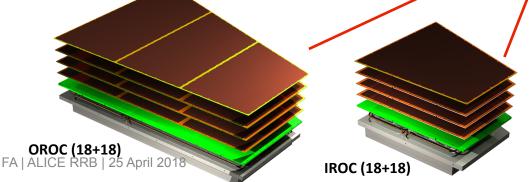
- Production has started in all sites (30 IB staves, 8 OB staves)
- Production will continue until April 2019 FA | ALICE RRB | 25 April 2018

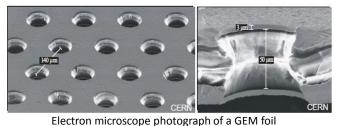
ITS Dry Assembly and Insertion Tests



Clean room 167, assembly & commissioning hall: setting-up

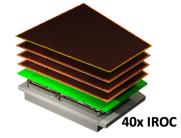

ITS Detector Mechanics assembly (1) ongoing, Insertion test (2) ongoing ; Cooling plant installation (3) WK5

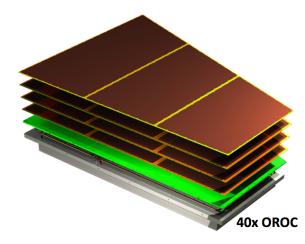




TPC Upgrade

- Goal: replace existing MWPC-based Readout Chambers and Front-End Electronics in LS2 to allow continuous readout of Pb-Pb collisions at 50 kHz in RUN3 and 4
- Technical solution: 4-layer GEM detectors





Production progress

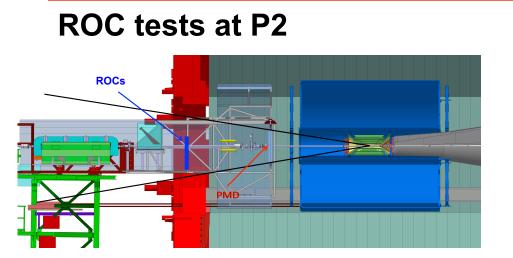
ALICE

ROC components	Needed	Produced	Fraction
Al-bodies	80	80	100 %
Padplanes	160	160	100 %
FEC connectors	15'000	15'000	100 %
HV cables	1'300	1'300	100 %
GEMs	720 (10% spares)	580	81 %
GEM frames	640	640	100 %

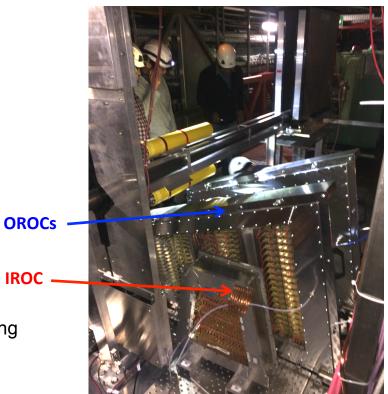
Assembly step	Goal	Assembled	Fraction
Chamber bodies (IROC/OROC)	40/40	27/22	61 %
Padplane + FEC connectors (IROC/OROC)	40/120	40/120	100 %
GEM framing	640	413	65 %
Assembled & Tested ROCs (IROC/OROC)	40/40	15/15	38 %

GEM and Reado

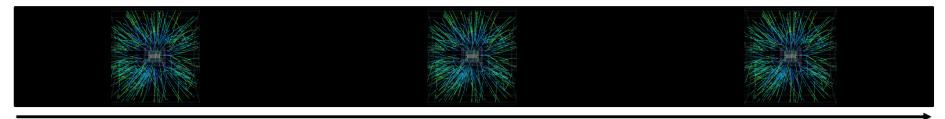
- 80% of GEM foils
- RO Chamber assertested, 15 arrived a
- Completion of Real.



op (total 720) **'s (of 80)** completed and


ted in **October 2018**

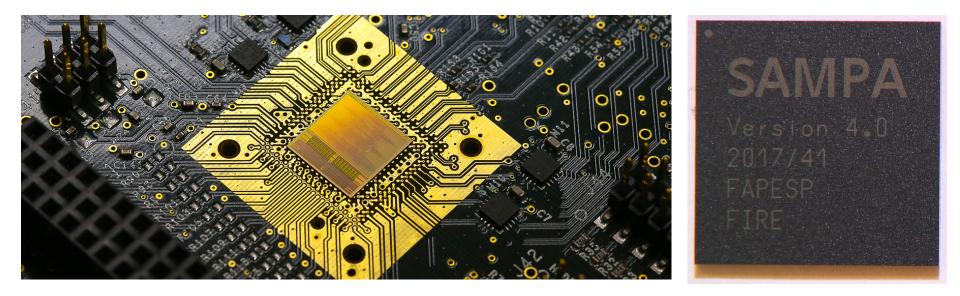
ALICE


- Tests of IROCs and OROCs at P2 continue in 2018
- 2 IROCs and 2 OROCs recently installed, test ongoing


TPC at high rate

- currently: average time between collisions ~125 μ s ~ TPC drift time
 - 1 event in TPC at any given time → triggerable

- after upgrade: average time between collision ~ 20 μs << TPC drift time
 - − 5 events in TPC at any given time \rightarrow continuous readout



Time

The SAMPA ASIC

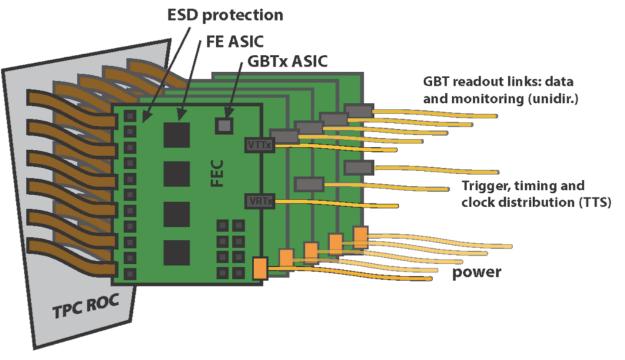
• custom ASIC for readout of the ALICE TPC and Muon Chambers

• designed and financed in Brazil (USP, FAPESP)

SAMPA specifications

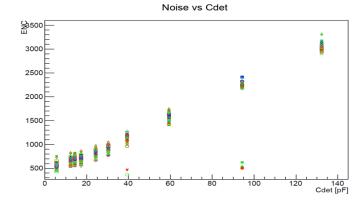
- TSMC CMOS 130 nm, 1.25 V technology
- 32 channels, Front-end + ADC + DSP
- package size $\leq 15 \times 15 \text{ mm}^2$
- ADC: 10-bit resolution, 20 MS/s, ENOB > 9.2
- DSP functions
 - pedestal removal, baseline shift corrections, zero-suppression
- read-out via up to 11 e-links at 320 Mbps
- Power < 32 mW/channel (Front End + ADC)

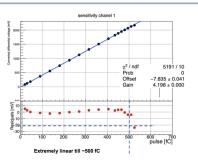
- Negative Input charge
- Sensor capacitance: 12 25 pF
- Sensitivity: 20mV/fC & 30mV/fC
- Noise: ENC ≤ 580 e⁻ @ 18.5pF
- Peaking time: ~160 ns, return to
- Baseline return: <500 ns


MCH Mode

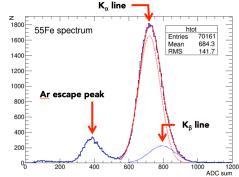
- Positive input charge
- Sensor capacitance: 40–80 pF
- Sensitivity: 4mV/fC
- Noise: ENC ≤ 950 e- @ 40pF 1600 e- @80pF
- Peaking time: ~300 ns
- Baseline return: <550 ns

TPC front-end card

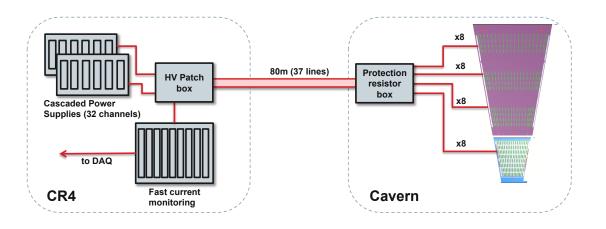

- 524000 channels @ 50 kHz read-out rate
- 3276 front-end cards & ~ 16380 front-end ASICs (SAMPA)



Status


- Production Readiness Review on 20/2
 → fully successful
- production started in March
 - 22 wafers → 5500 ASICs
- ~ 500 ASICs tested
 - yield > 80% (70% budgeted for)
 - automated test bench (incl. robot)
- noise as from specs

very high linearity
 SAMPA V3 #S059 MCH@4mV/fC

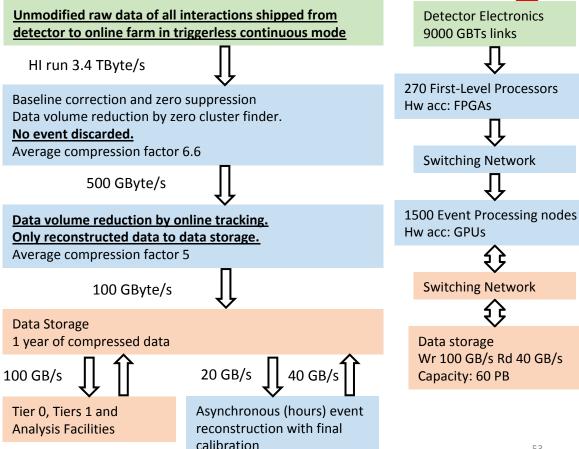

first Fe spectrum!

TPC GEM HV System

- GEM HV scheme with multi-channel cascaded power supplies and fast current monitoring system
- Final setup successfully tested with ROCs at P2 in 2017
- EDR/PRR passed in 11/2017
- All components ordered in 3/2018

O² System

Requirements

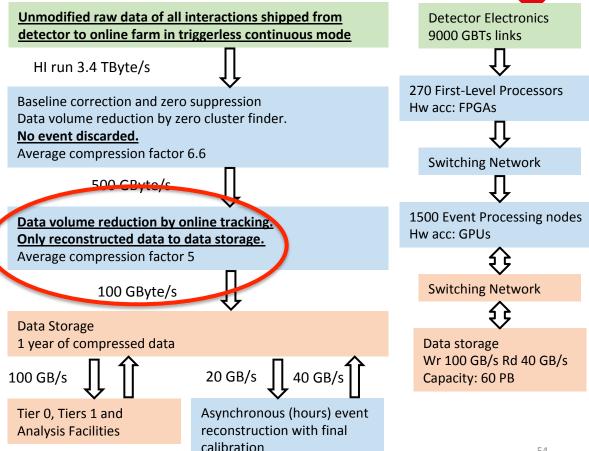

- LHC min bias Pb-Pb at 50 kHz 1
- 2. very small signal over background \rightarrow triggering not possible
- 3. support for continuous read-out

New computing system

- read-out the data of all interactions
- compress data intelligently

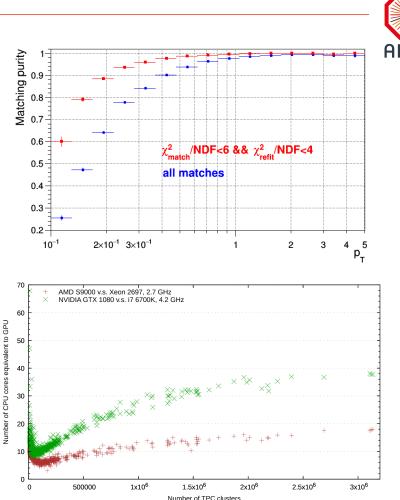
 \rightarrow online reconstruction

common online-offline computing system $\rightarrow 0^2$


O² System

Requirements

- LHC min bias Pb-Pb at 50 kHz 1
- 2. very small signal over background \rightarrow triggering not possible
- 3. support for continuous read-out


New computing system

- read-out the data of all interactions
- compress data intelligently \rightarrow online reconstruction
- common online-offline computing system $\rightarrow 0^2$

Status of the reconstruction ITS/TPC track matching

- Combined ITS/TPC reconstruction released
- Matching of tracks from independent TPC and ITS tracking released
- CPU and GPU versions for tracking of continuously read-out data
- Performance benefit of GPU confirmed
- Current benchmarks within the processing envelope

Status of the Physics Simulation

Porting to the O2 software framework

	der Start	Planning	Geometry	🍋 Hits	Digits	💅 Ready
Passive*				na	na	M
ITS						1
TPC						2
MFT				\checkmark		bal ba
EMCAL				\checkmark	2	Q1
TOF				\checkmark		Q1
FIT				V		Q2
TRD				1		Q2
PHOS						Q2
MUON			<u></u>			Q3
HMPID	Â					Q3
ZDC	Â					?

Done: ITS, TPC, MFT, EMC, TOF

In progress: FIT, TRD, PHOS

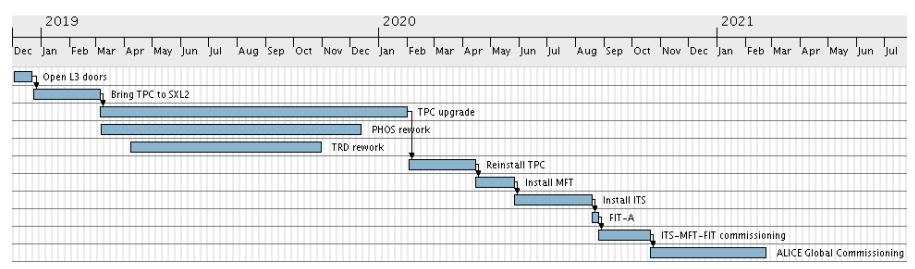
Starting: MUON

O² Computing farm monitoring

• Evaluation finished and tools selected

Тс	ol	Function
Collectd		Performance metrics collection
Flume		Transport and basic processing
Apache Spark	Spark	In memory data processing
Influx DB	SinfluxDB	Time series database
Grafana	Grafana	Time series visualization
Riemann	RIEMANN	Alarming

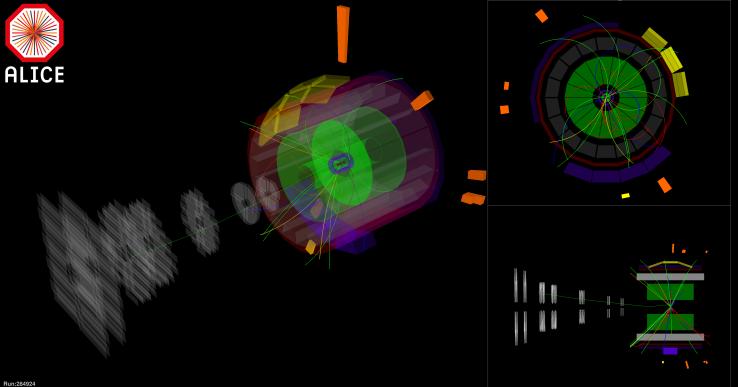
Preparation of Data Centre at P2



- building permit approved in February
- 700 t concreted blocks evacuated from site last year
- civil engineering work (trenches, concrete slabs) starting
- connection to P2 electrical supply and cooling in July-August
- site planned to be ready by September 2018 \rightarrow installation of first batch of modules

LS2 schedule

- LS2 starting date: 3 December 2018
- TRD supermodule extraction in December (w51)
- LS2 end date: 22 February 2021
- 4 weeks TPC field cage checks with X-rays



Conclusions

- Run 2 data collection proceeds smoothly
 - 2018 is a crucial year (completion of pp, largest Pb-Pb sample)
- physics harvest continues
 - progress in understanding QGP transport parameters
 - progress in understanding cold-nuclear matter effects
 - progress in understanding collectivity in small systems
- construction in full swing for all upgrade projects
 - proceeding according to plans
 - 7 months to go to start of LS2!!!
 - tight installation/commissioning plan
- we are grateful to the funding agencies for their constant support!

Run:284924 Timestamp:2018-04-17 15:20:26(UTC) Colliding system:p-p Energy: 13 TeV

Thank you!