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Goals

➔ being the fastest way to get physicists to their results
➔ being the go-to ROOT analysis interface from 1 to 100 cores, laptop to cluster, with little to no change in user code
➔ ease transition between python and c++ (in both directions)

Other interfaces (TMVA, TBrowser) could be powered by under-the-hood usage of TDF

cut-flow reports
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Results TDFAnalysis(TDataFrame &d);
auto ResultsList = MapTDF(TDFAnalysis, datasets)

Mapping an analysis to multiple data-sets
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Results TDFAnalysis(TDataFrame &d);
auto ResultsList = MapTDF(TDFAnalysis, datasets)

Mapping an analysis to multiple data-sets

Same concept can be applied for running a TDFAnalysis distributedly.
TDataFrame inherently knows how to reduce results, because it already does it in multi-thread runs





pyTDF
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TDF python interface is missing crucial ingredients

➔ integration with other common python libraries (i.e. numpy, see Stefan’s presentation)
➔ integration with python’s functional environment (lambdas, python functions)
➔ re-Define a column (natural to have in an interactive environment)
➔ more pythonic interfaces
➔ jitting is slow because of multiple calls to the interpreter, but a TDF-side fix is coming

Already in ROOT’s POW, so I’m not saying anything new



Missing actions
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Some useful actions are still missing (summer student project)

➔ StdDev
➔ Histo1D(“x”, preprocessingLambda)
➔ Histo2D/3D with autobinning (no histo model required)
➔ Head/Display
➔ Graph

but:

➔ we cannot satisfy all needs with TDF methods
➔ we want a lean interface.
➔ users need a way to run their custom actions



Custom actions
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Booking your own action:

auto customResult = tdf.Book(CustomHelper(“x”))
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Booking your own action:

auto customResult = tdf.Book(CustomHelper(“x”))

what to execute? MyCustomHelper::Exec
on what columns? CustomHelper.GetColumnNames()

of what types? CustomHelper::ColumnTypes_t

what type to return? TResultProxy<MyCustomHelper::Result_t>
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Booking your own action:

auto customResult = tdf.Book(CustomHelper(“x”))

auto customResult = tdf  |  DefineQuantities()  |  ApplyFilters()  |    CustomAction();

with pipes:  TDF pipes gist

what to execute? MyCustomHelper::Exec
on what columns? CustomHelper.GetColumnNames()

of what types? CustomHelper::ColumnTypes_t

what type to return? TResultProxy<MyCustomHelper::Result_t>

as a side note: what would custom transformations mean? custom event loop manager?

https://gist.github.com/bluehood/54b9173a4d6996a8c6d0b8898b67e723


Faster I/O
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I/O is an analysis bottleneck in all realistic applications

Some ideas on how TDF could help:

➔ democratization of latest features (e.g. TBufferMerger), in a transparent manner
➔ “normalization” of user-facing interfaces, low-level adoption of all new advancements
➔ integration of bulk I/O when ready, e.g. via a TDataSource:

for simple data models we can be much faster (see e.g. uproot)
➔ lobby to reduce TBranchProxy’s overhead :)
➔ easy explicit caching
➔ to be investigated: performance of multi-thread I/O over network: here be dragons
➔ to be investigated: implicit caching
➔ a serious performance optimization of TDataFrame has yet to be done:

writing benchmarks for rootbench will help greatly

https://github.com/scikit-hep/uproot




Writing multiple files with one event loop

Problem: the following code loops over data twice, at each Snapshot call:
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auto newTDF1 = df.Snapshot(“t”, “sig.root”, {“signal1”, “signal2”});
auto newTDF2 = df.Snapshot(“t”, “bkg.root”, {“bkg1”, “bkg2”});

➔ users will expect to call Snapshot and find their files on disk
➔ we don’t want users to directly trigger the event loop
➔ expert users should be able to tweak this behaviour to write multiple files in one loop

Proposed solution

TDF::TSnapshotOptions  opts;
opts.fLazy = true;
auto newTDF1 = df.Snapshot(“t”, “sig.root”, {“signal1”, “signal2”}, 
opts);
auto newTDF2 = df.Snapshot(“t”, “bkg.root”, {“bkg1”, “bkg2”});



Rename TResultProxy -> TResultPtr
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Currently, TDataFrame actions return TResultProxy<T>: a smart pointer (with shared ownership) that 
triggers the TDF event-loop (if needed) upon access to the pointee.

Problem: users do not know what to do with a “proxy”

https://root-forum.cern.ch/t/tdataframe-histograms/27759/5
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Currently, TDataFrame actions return TResultProxy<T>: a smart pointer (with shared ownership) that 
triggers the TDF event-loop (if needed) upon access to the pointee.

Problem: users do not know what to do with a “proxy”

Proposed solution: 
➔ add to TResultProxy what is missing to behave like a std::shared_ptr
➔ change its name to TResultPtr

Rationale is better teachability and adherence to the principle of least surprise:
➔ TResultPtr instantly indicates the semantics of the object, which TResultProxy does not
➔ TResultPtr instantly indicates that the pointee is accessible via `->`
➔ C++ users won’t find it weird to declare a vector<TResultPtr<TH1D>>, while a 

vector<TResultProxy<TH1D>> sounds scarier (what is a proxy? how does it behave?)

Alternatives like TResultFuture have been considered, but in my opinion they do not convey the right 
information, that is “how to use” rather than “how it works”

https://root-forum.cern.ch/t/tdataframe-histograms/27759/5


Less surprising cut-flow reports
The “old” Report interface:
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tdf.Filter(“x > 0”, “x_cut”).Filter(“y > 10”, “y_cut”).Report();

➔ it’s not lazy nor “instant”: it triggers the event-loop if it needs to
➔ it looks like an action, but does not return anything
➔ impossible to programmatically inspect reports
➔ it prints on screen

we are already halfway there thanks to Danilo

The problem: Report is weird:

Proposed solution
auto report = tdf.Filter(“x > 0”, “x_cut”).Filter(“y > 10”, “y_cut”).Report();
report->Print(); // event loop triggered here, lazily
...
std::cout << report[“x_cut”].GetEff() << std::endl;



Improved internal ownership model

Problem:

➔ currently the first (head) node of a TDF computation graph owns all the other nodes
➔ nothing works (everything throws) if the head node goes out of scope before its children

Proposed solution: each node will keep a shared_ptr to its parent.

● all nodes that are required to stay alive automatically stay alive
● nodes that are part of “dead branches” in the graph are pruned automatically
● one-liners become possible: auto h = TDataFrame().Define().Filter().Histo1D()

but

● actions need to register and de-register themselves with the head node
● jitting and Reports might become more complicated with the new model
● performance impact of calling parent node’s methods via shared_ptr vs reference is to be 

measured: https://godbolt.org/g/pr7Pih
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https://godbolt.org/g/pr7Pih

