
Data-loading (for ML applications) using TDFs

Stefan Wunsch

stefan.wunsch@cern.ch

2018-02-22

1



Motivation
I Most of the data analysis of the high-level HEP analyses

happens in the Python domain (frameworks of analysis groups
on top of flat ntuples).

I Even more extrem for ML applications: Most frameworks are
only usable from Python (Keras, xgboost, most of TensorFlow,
PyTorch, . . . )

I How data-loading often looks like (for ML applications) in HEP:
...
>>> x = root_pandas.read_root("file.root", "tree").as_matrix()
>>> print(x.shape)
(number_of_entries, number_of_branches)
>>> model.fit(x, ...)
...

I Most efficient solution today: root_numpy (used by
root_pandas)

I But ROOT has the possibilities to do this more efficient.
2



Random slide from a MVA-based analysis

3

https://indico.cern.ch/event/690737/contributions/2905432/attachments/1604788/2545673/Data-Driven-Hgg-19-02-2018.pdf


Feature request

I Support taking data from ROOT files and put it into memory
(as fast as possible)

I Memory layout of the output: Contiguous, interpretable as
n-dimensional arrays

I Make the data accessible from Python, interpretation of
memory as numpy array

Interface proposal using TDataFrame:

>>> tdf = ROOT.Experimental.TDataFrame("tree", "file.root")
>>> tdf = tdf.Filter("var1>0").Define("new_var", "var1*var2")
>>> x = tdf.AsMatrix(["var1", "var2", "new_var"])
>>> print(x.shape)
(number_of_entries, 3)

4



Advantages compared to root_numpy approach

I Useful set of TDF features directly usable
I Efficient selection of data (Filter)
I Define new variables (Define)
I Other fancy operations (ForEach)
I . . .

I Size of input files not limited by memory

I Make use of implicit multi-threading
→ Gain of a factor of N in speedup (ideally)

5



First benchmarks (1)

1 2 3 4
Number of threads

7

8

9

10

11

12
El

ap
se

d 
tim

e 
in

 se
co

nd
s

Loading 709MB of data from disk to memory.
Array of random floats with shape (50000000, 4)

root_numpy
TDataFrame

Measured on a machine with (2) 4 (physical) logical cores.
6



First benchmarks (2)

0.7 1.4 2.1 2.8
Size of data in MB

10

20

30

40

50
El

ap
se

d 
tim

e 
in

 se
co

nd
s

Performance subject to input data size and number of threads
TDF with 1 thread
TDF with 2 threads
TDF with 3 threads
TDF with 4 threads
root_numpy

Measured on a machine with (2) 4 (physical) logical cores.

7



First benchmarks (3)

0 5 10 15 20
Number of threads

20

30

40

50

60

El
ap

se
d 

tim
e 

in
 se

co
nd

s

Loading 2.8GB of data from disk to memory.

Measured on a machine with (24) 48 (physical) logical cores.

8



What is missing to do this properly?

I Proposal for a matching interface in C++ (Container for
returned data?)

I Proper PyROOT handling of numpy arrays
I Input argument handling: Interpreted as float*, shape

information is lost
I Return value handling: Not supported (?)

9


