Data-loading (for ML applications) using TDFs

Stefan Wunsch

stefan.wunsch@cern.ch

2018-02-22



Motivation

» Most of the data analysis of the high-level HEP analyses
happens in the Python domain (frameworks of analysis groups
on top of flat ntuples).

» Even more extrem for ML applications: Most frameworks are
only usable from Python (Keras, xgboost, most of TensorFlow,
PyTorch, ...)

» How data-loading often looks like (for ML applications) in HEP:

>>> x = root_pandas.read_root("file.root", "tree").as_matrix()
>>> print(x.shape)

(number_of_entries, number_of_branches)

>>> model.fit(x, ...)

» Most efficient solution today: root_numpy (used by
root_pandas)
» But ROOT has the possibilities to do this more efficient.



* Most of the tools that we will be using for the VBF analysis are based on python
packages for data analysis:
« For data handeling we will use numpy[0] and pandas[1]
* to use scikit-learn[2], you will need to translate the root-tree into numpy arrays

* Atool exist already to solve this issue root_numpy([3]

Random slide from a MVA-based analysis

P ;
VARIAB

|
v /
TNUM
CONVERSION \

CREATE HOFS FILES



https://indico.cern.ch/event/690737/contributions/2905432/attachments/1604788/2545673/Data-Driven-Hgg-19-02-2018.pdf

Feature request

» Support taking data from ROOT files and put it into memory
(as fast as possible)

» Memory layout of the output: Contiguous, interpretable as
n-dimensional arrays

» Make the data accessible from Python, interpretation of
memory as numpy array

Interface proposal using TDataFrame:

>>> tdf = ROOT.Experimental.TDataFrame("tree", "file.root")
>>> tdf = tdf.Filter("var1>0") .Define("new_var", "varlxvar2")
>>> x = tdf.AsMatrix(["varl", "var2", "new_var"])

>>> print (x.shape)

(number_of_entries, 3)



Advantages compared to root_numpy approach

> Useful set of TDF features directly usable

Efficient selection of data (Filter)
Define new variables (Define)
Other fancy operations (ForEach)

>
S
>
>

» Size of input files not limited by memory

» Make use of implicit multi-threading
— Gain of a factor of N in speedup (ideally)



First benchmarks (1)

Loading 709MB of data from disk to memory.
Array of random floats with shape (50000000, 4)

1241
1%}
2
o 114
9]
(O]
1%}
-E 107 —— root_numpy
E 9. + TDataFrame
©
(]
2 8-
©
W +
+ +
1 2 3 4

Number of threads

Measured on a machine with (2) 4 (physical) logical cores.



First benchmarks (2)

Performance subject to input data size and number of threads

50 /4' —~+- TDF with 1 thread
y /’ TDF with 2 threads
§ 40 - // —+- TDF with 3 threads
@ & —+- TDF with 4 threads
/
< ’ +- root_num
o 301 // - 24
€ e 4
s }*_// et
he] , e
3 20 1 i - ’}':”
Q g /’;:’*
© 7 2z
o ¥ _2PF
10 _z#7
#2
0.7 1.4 2.1 2.8

Size of data in MB

Measured on a machine with (2) 4 (physical) logical cores.



First benchmarks (3)

Loading 2.8GB of data from disk to memory.

60 -

+

5

gso-Jr

9]

(]

"

< 40 J[

M

%30-

b4

w 20 A + +

+

0 5 10 15 20

Number of threads

Measured on a machine with (24) 48 (physical) logical cores.



What is missing to do this properly?

» Proposal for a matching interface in C++ (Container for
returned data?)

» Proper PyROOT handling of numpy arrays

> Input argument handling: Interpreted as float*, shape
information is lost
» Return value handling: Not supported (?)



