

Lepton Flavour Universality tests using semitauonic decays at LHCb

2nd RED LHC workshop CIEMAT (Madrid) 9-11th May 2018 Beatriz García Plana beatriz.garcia@usc.es Universidade de Santiago de Compostela

Introduction

Outline

• Fit results

Results

Conclusions

- Features of the analysis
- Analysis method

Method

- Global picture
- Conclusions

Lepton Flavour Universality

- SM predicts Lepton Flavour Universality (LFU): equal couplings between gauge bosons and the three lepton families
- Tensions between SM expectacion and experimental results:
 - <u>Charged currents</u>: $b \rightarrow clv$: this talk \odot
 - <u>Neutral currents</u>: $b \rightarrow sll$ transitions
- Observation of violation of LFU: sign of new physics
- A large class of BSM models contain new interactions that involve third generations of quarks and leptons:

h

• Charged Higgs, leptoquarks, W'...

NP?

VI

Why semitauonic decays?

LHCb

Tree level decays in the SM, mediated by a W boson

 $R(\mathcal{H}_c) = \frac{\mathcal{B}(\mathcal{H}_b \to \mathcal{H}_c \tau \nu_{\tau})}{\mathcal{B}(\mathcal{H}_b \to \mathcal{H}_c \mu \nu_{\mu})}$

$$\mathcal{H}_{b} = B^{0}, B^{+}_{(c)}, \Lambda^{0}_{b}...$$
$$\mathcal{H}_{c} = D^{*}, D^{0}, D^{+}, D_{s}, \Lambda^{(*)}_{c}, J/\psi...$$

- Clean predicion from SM
 - Partial cancelation of form factors uncertainties in the ratio
 - Deviation from unity due to different available phase space
- **Large rate** of charged current decays BR($B \rightarrow D^* \tau \nu$)~1.2 % in SM
- Sensitivity to NP contributions at tree level

Why semitauonic decays?

Tree level decays in the SM, mediated by a W boson

$$R(\mathcal{H}_c) = \frac{\mathcal{B}(\mathcal{H}_b \to \mathcal{H}_c \tau \nu_{\tau})}{\mathcal{B}(\mathcal{H}_b \to \mathcal{H}_c \mu \nu_{\mu})}$$

$$\mathcal{H}_{b} = B^{0}, B^{+}_{(c)}, \Lambda^{0}_{b}...$$
$$\mathcal{H}_{c} = D^{*}, D^{0}, D^{+}, D_{s}, \Lambda^{(*)}_{c}, J/\psi...$$

- Clean predicion from SM
 - Partial cancelation of form factors uncertainties in the ratio
 - Deviation from unity due to different available phase space
- **Large rate** of charged current decays BR($B \rightarrow D^* \tau \nu$)~1.2 % in SM
- Sensitivity to NP contributions at tree level

•
$$\tau$$
 lepton reconstructed using
the $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ (\pi^0) v_{\tau}$ decay
mode

 Semileptonic decay without charged leptons in final state

$$R(D^{*-}) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

[PhysRevD.97.072013] [PhysRevLett.120.171802]

Beatriz García Plana (USC)

Features of the analysis

[PhysRevD.97.072013] [PhysRevLett.120.171802]

• **Testing LFU with R(D^{*-}).** What we measure:

$$R_{had}(D^{*-}) = \frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\mu})}{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)} = \frac{\mathbf{N_{sig}}}{\mathbf{N_{norm}}} \times \frac{\epsilon_{norm}}{\epsilon_{sig}} \times \frac{1}{\mathcal{B}(\tau^+ \to \pi^+\pi^-\pi^+(\pi^0)\overline{\nu}_{\tau})}$$

- Signal and normalization share same visible state: $D^* \pi^+ \pi^- \pi^+$
- Most of the theoretical and experimental uncertainties on luminosity, cross sections and hadronization probability cancel out in the ratio
- **R(D*-)** obtained from:

$$R(D^{*-}) = R_{had}(D^{*-}) \times \frac{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}{\mathcal{B}(B^0 \to D^{*-}\mu^+\nu_{\mu})} \qquad \mbox{[4.0 \% precision, PDG2017]} \mbox{[2.2 \% precision, HFLAV 2016]} \label{eq:R}$$

R(D*-) hadronic: strategy

• Most important background due to $B \rightarrow D^{*-}\pi^{+}\pi^{-}\pi^{+}X$ (neutrals), where 3 pions come from the *B* vertex (100 higher than the signal)

Requirement: decay topology with minimum distance between B and τ vertices >4 $\sigma_{\Delta z.}$ Suppressed by 3 orders of magnitude

2nd most important background comes from $B \rightarrow D^* D_s^* X$. Multivariate Analysis

Beatriz García Plana (USC)

[PhysRevD.97.072013]

LHCD

R(D*-) fit results

Result run 1 data:

- $N(B^0 \rightarrow D^* \pi^+ \pi^- \pi^+)$ unbinned likelihood fit to $M(D^* \pi^- \pi^+ \pi^-)$
- $N(B^0 \rightarrow D^* \tau^+ \nu_{\tau})$ three dimensional binned fit to data <u>Variables</u>: τ decay time, q², BDT output

 $R(D^{*-}) = 0.291 \pm 0.019(stat) \pm 0.026(syst) \pm 0.013(ext)$

Beatriz García Plana (USC)

Conclusions & future prospects

Exciting program ahead! Updates and new analysis with run 2 data, 5 fb⁻¹ Statistical and systematic uncertainties will be reduced. STAY TUNED!

 $R(D^*), R(D^0), R(D^+), R(D_{\circ}), R(J/\psi), R(\Lambda_{\circ})...$

Beatriz García Plana (USC)

Thank you for your attention

Backup slides

LHCb detector

- Excellent vertex resolution: 20µm resolution on impact parameter
- Excellent particle identification
- Calorimeter systems: supress events with missing neutral energy (π^0, K^0, Υ)

Beatriz García Plana (USC)

BDT

[PhysRevD.97.072013] LHCb

- Most important background after the inversion cut comes from $B \rightarrow D^* D_s^+ X$
- Multivariate Analysis: 18 variables combined in a **BDT**:
 - 3π variables
 - $D^*-3\pi$ dynamics
 - Neutral isolation variables

BDT used as variable in the fit to extract signal yield

Beatriz García Plana (USC)

R(D*-) systematics (2009)

Main systematic uncertainties due to:

- Size of simulated sample
- Shape of the **background** $B \rightarrow D^{*-}D_{s}^{+}$
- $D_{(s)}^{+} \rightarrow \pi^{+}\pi^{-}\pi^{+}X$ decay mode. **BESII** fut uncertainty. Improvement as well of t $\ddot{\mathbb{C}}$
- Branching fraction of normalisation n precision. Belle II can measure it prec

Beatriz García Plana (USC)

R(D*-) systematics

Contribution	Value in $\%$
$\mathcal{B}(\tau^+ \to 3\pi\overline{\nu}_{\tau})/\mathcal{B}(\tau^+ \to 3\pi(\pi^0)\overline{\nu}_{\tau})$	0.7
Form factors (template shapes)	0.7
au polarization effects	0.4
Other τ decays	1.0
$B \to D^{**} \tau^+ \nu_{\tau}$	2.3
$B_s^0 \to D_s^{**} \tau^+ \nu_\tau$ feed-down	1.5
$D_s^+ \to 3\pi X$ decay model	2.5
D_s^+, D^0 and D^+ template shape	2.9
$B \to D^{*-}D^+_s(X)$ and $B \to D^{*-}D^0(X)$ decay model	2.6
$D^{*-}3\pi X$ from B decays	2.8
Combinatorial background (shape + normalization)	0.7
Bias due to empty bins in templates	1.3
Size of simulation samples	4.1
Trigger acceptance	1.2
Trigger efficiency	1.0
Online selection	2.0
Offline selection	2.0
Charged-isolation algorithm	1.0
Normalization channel	1.0
Particle identification	1.3
Signal efficiencies (size of simulation samples)	1.7
Normalization channel efficiency (size of simulation samples)	1.6
Normalization channel efficiency (modeling of $B^0 \to D^{*-}3\pi$)	2.0
Form factors (efficiency)	1.0
Total uncertainty	9.1

Beatriz García Plana (USC)