

Reunión Red LHC

Madrid, May 10th, 2018

Search for Heavy ZZ / ZW Resonances in 2l2q Final States with CMS

(CMS B2G-17-013)

Jorge F. de Trocóniz

Universidad Autónoma de Madrid

Hadron Z / W / H Resonances

Pros: Large Branching Fractions

Cons: Large backgrounds from V+jets, QCD.

 Estimate via NLO QCD and/or sideband (SB) data.

Heavy Resonance = Boosted Regime

Z/W/H-tagging vs. QCD

- Standard discrimination against QCD in CMS uses:
 - 1. PU mitigation: CHS: Charged Hadron Subtraction, (Hybrid) Jet Area Subtraction: pT offset/area, PUPPI.
 - 2. Jet Grooming: Recluster jet removing soft and wide angle constituents (PU, ISR, UE). Main observable is the groomed M(J); grooming pushes QCD to lower M(J) values and improves signal mass resolution. Pruning, Soft Drop.
 - 3. Jet Substructure: N-subjettiness quantifies consistency of jet energy flow aligned along N directions / subjets. Ratio of 2-subjettiness over 1-subjetiness discriminate from single quark- or gluon-initiated jets.
 - 4. B-tagging in boosted topologies: Subjet CSV: Combined Secondary Vertex on SD subjets for Z-tagging; Double-B: Double b-tagging (mostly) dedicated to boosted H decays.

Pileup

<PU> ~ 15 @ 2015

CMS Average Pileup, pp, 2015, $\sqrt{s}=$ 13 TeV

<PU> ~ 30 @ 2016

CMS Average Pileup, pp, 2016, $\sqrt{s}=$ 13 TeV

2017: PU > ~33, $PU_{max} ~85$

Pile Up Per Particle Identification (2014)

- Per particle pileup mitigation technique: "redefinition" of PF event content.
- Examine particle density around PU charged tracks; get distributions for alpha using leading vertex (LV) charged tracks and others.

$$\alpha_i = \log \sum_{j \in \text{event}} \xi_{ij} \times \Theta(R_{\min} \leq \Delta R_{ij} \leq R_0),$$
where $\xi_{ij} = \frac{p_{Tj}}{\Delta R_{ij}}.$

- Calculate the median and the width of event-by-event alpha distributions.
- Neutral particle 4-momentum weighted, based on 1D chi-squared probability using:

$$\chi_i^2 = \Theta(\alpha_i - \bar{\alpha}_{PU}) \times \frac{(\alpha_i - \bar{\alpha}_{PU})^2}{\sigma_{PU}^2},$$

Charged: $\alpha_i^C = \log \sum_{j \in \text{Ch,LV}} \xi_{ij} \, \Theta(R_{\min} \leq \Delta R_{ij} \leq R_0),$ Forward: $\alpha_i^F = \log \sum_{j \in \text{Ch,LV}} \xi_{ij} \, \Theta(R_{\min} \leq \Delta R_{ij} \leq R_0).$

D. Bertolini, P. Harris, M. Low, N. Tran, JHEP 1410 (2014) 059

Soft Drop Grooming (2014)

Undo last stage of C/A jet clustering into subjets 1 and 2.

$$lacktriangledown$$
 If $\dfrac{min(p_{T1},p_{T2})}{p_{T1}+p_{T2}}>z_{cut}\left(\dfrac{\Delta R_{12}}{R_0}
ight)^{eta}$, declare SD jet is defined;

- else, drop softer subjet and iterate on harder one.
- For beta = 0, soft radiation removed (aka modified mass drop tagger).

A. Larkoski, S. Marzani, G. Soyez, J. Thaler, JHEP 1405 (2014) 146

Pileup Mitigation + Grooming Performance

2015: PF + CHS with Hybrid Jet Area PU subtraction, Pruning.

2016: PF + PUPPI, Soft Drop ($z_{cut} = 0.1$, beta = 0). Improved M(J) resolution and V-tagging efficiency stability vs. number of PVs and pT(J).

Grooming: Merged Jet Mass

2016

Resolution M(J) \sim 9 - 10%; Resolution M(2IJ) \sim 3 - 4%

Substructure: N-Subjetiness

$$\tau_N = \frac{1}{d_0} \sum_k p_{\mathrm{T},k} \min(\Delta R_{1,k}, \Delta R_{2,k}, \ldots, \Delta R_{N,k}),$$

 τ_2 / τ_1 is found to be a powerful discriminant Events 8, $X \to VH \to q \overline{q} b \overline{b}$ 35.9 fb⁻¹ (13 TeV) 2016 Background simulation Data CMS

Boosted W/Z Tagging Calibration

2016

Lepton + jets top-enriched data sample.

W signal used to extract V-tagging data/MC scale factors

2015

Inclusive high-pT AK8 jet data sample.

Very clear Z/W bump above QCD continuum in M(J) distribution.

ZZ/ZW Resonances: Heavy H, W', WED

2016 X → ZV Analysis

CMS Experiment at LHC, CERN

Data recorded: Sun Jul 17 00:09:52 2016 CEST

Run/Event: 276870 / 3233046529

Lumi section: 1797

Orbit/Crossing: 470828867 / 2849

 $m_J = 69.5 \text{ GeV}$ $m_{ZV} = 2015 \text{ GeV}$

Intermediate Mass Search:

Both V-tags and dijets considered

Background estimated using SB data-corrected

NLO Z+jets MC prediction

Categorization based on b-tagging

High Mass Search:

Close-by lepton effects considered Background estimated from MC-assisted smoothed extrapolation of M(J) SB data Categorizations based on τ_2 / τ_1

Intermediate Mass Analysis: M(J), M(JJ)

Intermediate Mass Analysis: M(2IJ), M(2I2J)

High Mass Analysis: M(J)

High Mass Analysis: M(2IJ)

Limits on W', Bulk Graviton Production

2016: No Significant Excess

