

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

SERGIO SÁNCHEZ CRUZ

2nd Red LHC workshop

SEARCH FOR TTH PRODUCTION IN MULTILEPTON CHANNELS

INTRODUCTION

- Challenging process to study at the LHC
- Very rich experimental signatures in the different decays of the Higgs
- Run 2 provides a unique opportunity for observation

Top-Higgs Yukawa coupling at the LHC

- Indirect probe through gluon fusion
- Direct sensitivity from ttH production

EXPERIMENTAL SIGNATURES Several topologies depending on the decay mode of the Higgs

- $H \rightarrow b\bar{b}$: large branching ratio but large irreducible $t\bar{t} + b\bar{b}$
- ▶ $H \rightarrow \gamma \gamma$: very clear final state, but tiny branching ratio
- ► $H \rightarrow WW^*$, ZZ^* , $\tau\tau$: lower BR, small backgrounds

▶ ttH multileptons: CMS-PAS-HIG-17-004

• Combination τ_h categories: arXiv:1803.05485

EXPERIMENTAL SIGNATURES

Several topologies depending on the decay mode of the Higgs

- $H \rightarrow b\bar{b}$: large branching ratio but large irreducible $t\bar{t} + b\bar{b}$
- $H \rightarrow \gamma \gamma$: very clear final state, but tiny branching ratio
- $H \rightarrow WW^*$, ZZ^* , $\tau\tau$: lower BR, small backgrounds \leftarrow covered in this talk

- ttH multileptons: CMS-PAS-HIG-17-004
- Combination τ_h categories: arXiv:1803.05485

ANALYSIS STRATEGY

arXiv:1803.05485

- Several categories depending on number of light leptons and hadronic taus
 - ► High jet and *b*-jet multiplicity

- ttV production from simulated events
- non-prompt leptons obtained from data-driven methods

EVENT CATEGORIZATION

CMS-PAS-HIG-17-004

- ► Further categorization in 2ℓss and 3ℓ categories
 - ► Event categorization in lepton flavor, charge and b-jet multiplicity
- Signal regions still dominated by background
 - Targeted multivariate discriminants for background rejection

MULTIVARIATE LEPTON IDENTIFICATION

- Multivariate discriminant to distinguish
 - Prompt leptons produced in W or Z decays
 - Leptons produced in other sources (b decays and misid. jets
- Very efficient in discriminating main sources of background

- Improvements in the lepton identification discriminants
- Adapted to the current detector conditions
- Redefinition of isolation and jet variables
 - Sizable gain with respect to the currently published discriminant
 - ► Gain is more significant for electrons and low p_T

Work in progress

EVENT-BY-EVENT MVA ANALYSIS

arXiv:1803.05485

- Event-by-event background discrimination based on
 - Multivariate hadronic top decay and Higgs decay taggers
 - Matrix element techniques
 - Other kinematic variables
- BDT discriminants trained against $t\bar{t}$ and ttV
 - Discriminators combined into a single variable using a likelihood discriminant
 - Optimal choice of bin multiplicity with a recursive application of the k-means algorithm

RESULTS

- Evidence for ttH production 3.2 σ (2.8 σ expected)
- Main uncertainties: theoretical uncertainties (12%), reducible background estimate (11%), lepton identification (11%)

CONCLUSIONS

- We have obtained evidence for ttH production in the multilepton channel
- Measurement dominated by systematic uncertainties
- Still room for improvement in lepton identification and reducible background estimation and rejection

- Looking forward for an observation of ttH in this channel
- Keep tuned for more results!

Back-up

Category	Observed limit on μ	Expected limit on μ
$1\ell + 2\tau_h$	2.7	$4.1^{+1.7}_{-1.4}$
2ℓss	2.8	$1.0^{+0.4}_{-0.2}$
$2\ell ss + 1\tau_h$	2.5	$1.4_{-0.3}^{+0.7}$
3 ℓ	2.7	$1.6^{+0.8}_{-0.4}$
$3\ell + 1\tau_h$	4.4	$2.8^{+1.3}_{-0.6}$
4ℓ	6.5	$4.9^{+2.8}_{-1.1}$
Combined	2.1	$0.8_{-0.2}^{+0.3}$