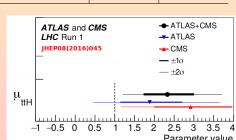


Associated production of a SM Higgs boson with pair of top quarks (tīH): Combination of CMS searches and perspectives for HL-LHC

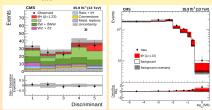
Pietro Vischia¹

¹ Universidá d'Uviéu

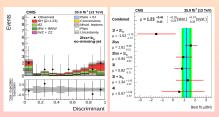

UNIVERSIDAD DE OVIEDO

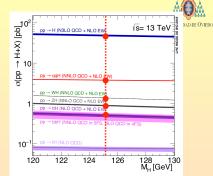
2nd workshop Red Española de LHC

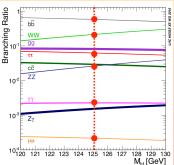
ATLAS and CMS ttH results before April 10th (What can we learn from a combination?)


Run I (7+8 TeV)	$\mu_{ m t ilde{t}H} = \sigma_{ m t ilde{t}H}/\sigma_{ m SM}$		Significances obs (exp)	
Run II, 36 fb ⁻¹	ATLAS	CMS	ATLAS	CMS
Run I comb.	$2.3^{+0.7}_{-0.6}$		4.4σ (2.0σ)	
bb	$0.8^{+0.6}_{-0.6}$	-0.2 ± 0.8	$1.4\sigma~(1.6\sigma)$	
multilepton	$1.6^{+0.5}_{-0.4}$	1.2 ± 0.4	4.1 <i>σ</i> (2.8 <i>σ</i>)	3.2σ (2.8σ)
$ au_h + X$	(included in multilep comb.)	(included in multilep comb)	comb. in multilep	
$\gamma\gamma$	$0.6^{+0.7}_{-0.6}$	$2.2^{+0.9}_{-0.8}$		3.3σ (1.5 σ)
ZZ	< 1.9 95% CL	$[0.0, +1.2]$ 68% CL with $\mu \geq 0$		
Combination	$1.2^{+0.3}_{-0.3}$		$4.2\sigma(3.8\sigma)$	

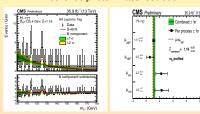
- $\mu_{\text{tiH}} \neq 0$ is generally favoured: evidence for tiH production!!!
- What should we do with the Run I result?
- Pattern of the excesses can be used as probe for Type-I 2HDM models (http://arxiv.org/abs/1703.06834)

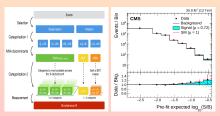


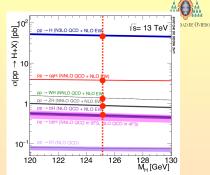

Production and decay (leptons, sweet leptons)

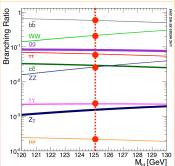

- Multi-leptonic (light) (H ightarrow ZZ* , H ightarrow WW*, H ightarrow au au)
 - The low-background one with the highest rate

- Multi-leptonic w/ hadronically decaying taus (τ_h) $(H \to \tau \tau$, also $H \to ZZ*$, $H \to WW*$)
 - Significant jet→τ_h fake background

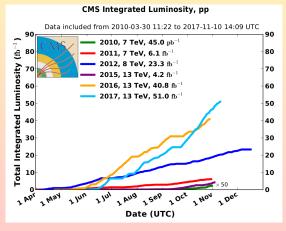





Production and decay (down the calorimetric hole)

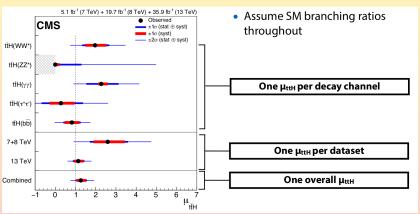

- $H \rightarrow \gamma \gamma$
 - Small $\mathcal{B}(H \to \gamma \gamma)$, but clean final state (low syst. uncertainties)
 - Excellent diphoton mass resolution

- $H \rightarrow b\bar{b}$
 - High branching ratio, but complex multi-jet final state

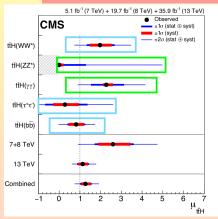

Contributing analyses (how complicated is the statistical model?)

Universidad de Oviedo

- 13 TeV (35.9 fb⁻¹)
 - All of the dedicated ttH analyses and categories on the 2016 dataset
- 7+8 TeV (up to $5.1 \text{ fb}^{-1} + 19.7 \text{ fb}^{-1}$)
 - Dedicated analyses targeting the bb and multilepton final states
 - ullet The $t\bar{t}H$ categories of the $H o\gamma\gamma$ analysis
 - Mass updated to 125.09 GeV, signal normalisation and uncertainties updated to latest values from LHC Higgs XS WG (same calculations as used in Run 2 analyses)


Correlations carefully assessed between Run-1 and Run-2

- Inclusive signal theory and some background theory uncertainties correlated
- Experimental uncertainties largely uncorrelated


- Measure ttH signal strength in combined analysis for three parameterisations
- Expected contamination from other Higgs processes (e.g. ggH, tH) is small
 - Treated as backgrounds normalized to SM prediction, subject to standard theoretical uncertainties

The combination (with all its uncertainty)

$$\mu_{t\bar{t}H} = 1.26^{+0.31}_{-0.26} = 1.26^{+0.16}_{-0.16} (stat)^{+0.17}_{-0.15} (expt)^{+0.14}_{-0.13} (bkg~th)^{+0.15}_{-0.07} (sig~th)$$

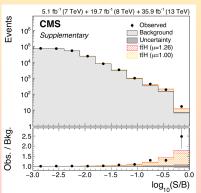
	Uncertainty				
Parameter	Best fit	Stat	Expt	Thbgd	Thsig
$\mu_{\mathrm{t\bar{t}H}}^{\mathrm{WW}^{*}}$	$1.97^{+0.71}_{-0.64}\atop \left(^{+0.57}_{-0.54}\right)$	$^{+0.42}_{-0.41}$ $^{+0.39}_{-0.38}$	+0.46 -0.42 (+0.36 -0.34)	$^{+0.21}_{-0.21}$ $^{+0.17}_{-0.17}$	$^{+0.25}_{-0.12}$ $^{+0.12}_{(-0.03)}$
$\mu_{\text{tiH}}^{ZZ^*}$	$0.00^{+1.30}_{-0.00}$ $\begin{pmatrix} +2.89 \\ -0.99 \end{pmatrix}$	$^{+1.28}_{-0.00}$ $^{+2.82}_{-0.99}$	+0.20 -0.00 (+0.51 -0.00)	$^{+0.04}_{-0.00}$ $\begin{pmatrix} +0.15\\ -0.00 \end{pmatrix}$	$^{+0.09}_{-0.00}$ $^{+0.27}_{-0.00}$
$\mu_{\text{t\bar{t}H}}^{\gamma\gamma}$	$2.27^{+0.86}_{-0.74}$ $\begin{pmatrix} +0.73 \\ -0.64 \end{pmatrix}$	$^{+0.80}_{-0.72}$ $^{+0.71}_{-0.64}$	$^{+0.15}_{-0.09}$ $^{+0.09}_{-0.04}$	$^{+0.02}_{-0.01}$ $\begin{pmatrix} +0.01\\ -0.00 \end{pmatrix}$	$^{+0.29}_{-0.13}$ $^{+0.13}_{-0.05}$
$\mu_{\text{tiH}}^{\tau^+\tau^-}$	$0.28^{+1.09}_{-0.96}$ $\begin{pmatrix} +1.00 \\ -0.89 \end{pmatrix}$	$^{+0.86}_{-0.77}$ $^{+0.83}_{-0.76}$	$^{+0.64}_{-0.53}$ $\begin{pmatrix} +0.54\\ -0.47 \end{pmatrix}$	$^{+0.10}_{-0.09}$ $\begin{pmatrix} +0.09\\ -0.08 \end{pmatrix}$	$^{+0.20}_{-0.19}$ $\begin{pmatrix} +0.14 \\ -0.01 \end{pmatrix}$
$\mu_{\rm ffH}^{\rm b\overline{b}}$	$0.82^{+0.44}_{-0.42}$ $\begin{pmatrix} +0.44 \\ -0.42 \end{pmatrix}$	$^{+0.23}_{-0.23}$ $^{+0.23}_{-0.22}$	$^{+0.24}_{-0.23}$ $^{+0.24}_{-0.23}$	$^{+0.27}_{-0.27}$ $\begin{pmatrix} +0.26 \\ -0.27 \end{pmatrix}$	$^{+0.11}_{-0.03}$ $^{+0.11}_{-0.04}$
$\mu_{\rm f\bar{t}H}^{7+8{\rm TeV}}$	$2.59^{+1.01}_{-0.88}$ $\begin{pmatrix} +0.87 \\ -0.79 \end{pmatrix}$	$^{+0.54}_{-0.53}$ $^{+0.51}_{-0.49}$	$^{+0.53}_{-0.49}$ $^{+0.48}_{-0.44}$	$^{+0.55}_{-0.49}$ $^{+0.50}_{-0.44}$	$^{+0.37}_{-0.13}$ $^{+0.14}_{-0.02}$
$\mu_{\rm t\bar{t}H}^{\rm 13TeV}$	$1.14^{+0.31}_{-0.27}$ $\begin{pmatrix} +0.29 \\ -0.26 \end{pmatrix}$	$^{+0.17}_{-0.16}$ $^{+0.16}_{(-0.16)}$	$^{+0.17}_{-0.17}$ $^{+0.17}_{(-0.16)}$	$^{+0.13}_{-0.12}$ $^{+0.13}_{-0.12}$	$^{+0.14}_{-0.06}$ $^{+0.11}_{-0.05}$
$\mu_{t\bar{t}H}$	$1.26^{+0.31}_{-0.26} \atop \left(^{+0.28}_{-0.25} \right)$	$^{+0.16}_{-0.16}$ $^{+0.15}_{-0.15}$	$^{+0.17}_{-0.15}$ $^{+0.16}_{(-0.15)}$	$^{+0.14}_{-0.13}$ $^{+0.13}_{(-0.12)}$	$^{+0.15}_{-0.07}$ $^{+0.11}_{-0.05}$

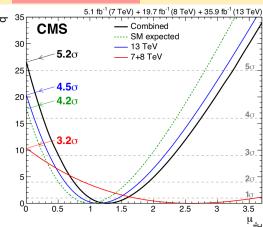
- ${
 m H}
 ightarrow \gamma \gamma$ and ${
 m H}
 ightarrow {
 m ZZ}$ channels still limited by statistics
- H \rightarrow leptons and H \rightarrow b \overline{b} searches dominated by systematics

Breakdown of uncertainties (where should I do better next time?)

- Each of the four uncertainty components of comparable magnitude
- Further breakdown reveals main components
- Signal theory
 - Mainly inclusive ttH prediction
- Background theory
 - Mainly tī +HF prediction in tīH (bb)
- Experimental
 - Lepton efficiencies
 - Lepton mis-id
 - b tagging
 - MC stats

Uncertainty source	Δμ	
Signal theory		-0.07
Inclusive ttH normalisation (cross section and BR)	+0.15	-0.07
ttH acceptance (scale, pdf, PS and UE)	+0.004	-0.004
Other Higgs boson production modes	+0.002	-0.003
Background theory	+0.14	-0.13
tt + bb/cc prediction	+0.13	-0.11
tt + V(V) prediction	+0.06	-0.06
Other background uncertainties	+0.03	-0.03
Experimental	+0.17	-0.15
Lepton (inc. τ_h) trigger, ID and iso. efficiency	+0.08	-0.06
Misidentified lepton prediction	+0.06	-0.06
b-Tagging efficiency	+0.05	-0.04
Jet and $\tau_{\rm h}$ energy scale and resolution	+0.04	-0.04
Luminosity	+0.04	-0.03
Photon ID, scale and resolution	+0.01	-0.01
Other experimental uncertainties	+0.01	-0.01
Finite number of simulated events	+0.08	-0.07
Statistical	+0.16	-0.16
Total	+0.31	-0.26

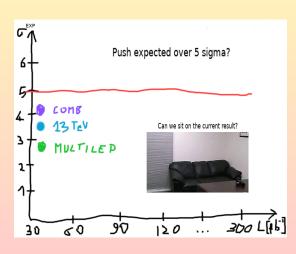

Significance (are you really sure?)



- A total of 88 event categories enter the combination
- Observed significance: 5.2σ (4.2σ exp.) with respect to the $\mu_t \bar{t} H = 0$ hypothesis
- First observation of the ttH production process:

arXiv:1804.02610: paper accepted by PRL!!!

 Clear excess in the most signal-sensitive bins



Perspectives (how to employ the next few years)

# 2 +k	
A A	
AAA - 100A	
0000	

	$\mu_{ m tar{t}H} = \sigma_{ m tar{t}H}/\sigma_{ m SM}$		Significances obs (exp		ERSID/
	ATLAS 13 TeV	CMS 7,8,13 TeV	ATLAS	CMS	
Combination	$1.2^{+0.3}_{-0.3}$	$1.26^{+0.31}_{-0.26}$	$4.2\sigma(3.8\sigma)$	$5.2\sigma(4.2\sigma)$	

- 13 TeV excesses mostly compatible with SM tt̄H
- 5.2σ CMS observation accepted by PRL
- Improve expected sensitivities to put final word
- Excellent perspectives for multilepton for legacy RunII and for RunIII
- Reduce uncertainties
 - Lepton ID, fakes (MVA)
 - Rethink and improve analyses methods (signal extraction...)
- Working on the next Yellow Report! (coming this year)

THANKS FOR THE ATTENTION!