Dark matter in astrophysics and cosmology

Antonio L. Maroto Universidad Complutense de Madrid

The standard cold dark matter scenario

- Observations ranging from matter distribution on cosmological (Gpc) scales down to galaxy rotation curves on (kpc) scales suggest the existence of a new form of non-baryonic, collisionless matter fluid with negligible pressure (CDM).
- This phenomenology strongly suggests DM made of non-relativistic weakly interacting **particles** (WIMPs) beyond the SM.

The standard cold dark matter scenario

- Observations ranging from matter distribution on cosmological (Gpc) scales down to galaxy rotation curves on (kpc) scales suggest the existence of a new form of non-baryonic, collisionless matter fluid with negligible pressure (CDM).
- This phenomenology strongly suggests DM made of non-relativistic weakly interacting **particles** (WIMPs) beyond the SM.

The standard cold dark matter scenario

- Observations ranging from matter distribution on cosmological (Gpc) scales down to galaxy rotation curves on (kpc) scales suggest the existence of a new form of non-baryonic, collisionless matter fluid with negligible pressure (CDM).
- This phenomenology strongly suggests DM made of non-relativistic weakly interacting particles (WIMPs) beyond the SM.

Problems of the CDM scenario

- Small-scale (< kpc) problems:
 - a) missing satellite

b) too-big-to-fail

Walker and Loeb arXiv:1401.1146

- Solutions proposed:
 - a) baryonic physics effects (SN feedback, stellar wind,...)
 - b) alternative DM models: warm, self-interacting, fuzzy DM ...

What is the nature of DM?

Particle or non-particle?: fuzzy (wave) DM

Consider a particle of mass $m \ll 1$ eV moving with the Hubble flow H

The corresponding de Broglie wavelength:

$$\lambda_{\rm dB} = \frac{1}{mv} = \frac{1}{mHr}$$

Thus, the particle can be localized only in a sphere with radius:

$$r \ge \lambda_{\mathrm{dB}} \quad \Longrightarrow \quad r \ge \frac{1}{\sqrt{Hm}}$$

$$k < \pi \sqrt{Hm}$$

particle-like behaviour

$$k > \pi \sqrt{Hm}$$

wave-like behaviour

Spin 0: Sin, (1994), Guzmán-Matos, (2000), Hui, Ostriker, Tremaine, Witten, arXiv:1610.08297

Spin 1: Cembranos, Maroto, Núñez-Jareño, arXiv:1611.03793

Spin 2: Aoki, Maeda, arXiv:1707.05003

The dark sector degeneracy

Since we only have detected dark matter and dark energy gravitationally,
the DM + DE splitting is just a useful assumption.

$$G_{\mu\nu} = 8\pi G \left(T_{\mu\nu}^{(baryons)} + T_{\mu\nu}^{(rad)} + T_{\mu\nu}^{(DM)} + T_{\mu\nu}^{(DE)}\right)$$
 non-gravitational detection
$$T_{\mu\nu}^{(dark)}$$

Dark sector degeneracy

The dark sector

Effective equation of state of the dark sector:

$$T^{\mu}_{\nu}^{(dark)} = \text{diag}(\rho, -p, -p, -p), \quad w(t) = \frac{p(t)}{\rho(t)}$$

M. Kunz, Compt. Rend. Phys. 13 (2012) 539

Exploring the dark sector: astrophysics and cosmology

- In the "nightmare scenario" (only gravitational interactions) or if DM is not particle-like we still have observational probes.
- Galaxy (optical, IR and radio) and lensing surveys, 21 cm, Ly- α , astrometry, CMB and GW will test dark matter distribution (scale and redshift dependence), DM-DE, DM-baryon and DM-neutrino interactions.

Exploring the dark sector: astrophysics and cosmology

Buckley and Peter, arXiv:1712.06615

