
Second Computational and Data Science school for HEP (CoDaS-HEP)

Wednesday, 25 July 2018

Matthieu Lefebvre
Princeton University

 Prerequisites:

 Recent C++ compiler (at least C++11 compliant)

 Eventually CMake

 git clone https://github.com/mpbl/codas_fpa/

 README.md for instructions

7/25/18CoDaS-HEP 2

 Disasters

 Reminder on integers

 Floating point numbers

 IEEE 754

 Rounding modes, exceptions, underflow, …

 Improving FPA accuracy

 Kahan algorithm, FMA

 Computing Faster

 Fast Math, reduced precision, mixed precision

 Concurrency

 Conclusion

 References

7/25/18CoDaS-HEP 3

7/25/18CoDaS-HEP 4

Patriot Missile Failure

Rounding errors

1991, Gulf War. Failed to track and intercept an incoming

Iraqi Scud missile. Inaccurate calculation of the time since

boot due to computer arithmetic errors

Explosion of the Ariane 5

Overflow

1996, Kourou, French Guiana

software error in the inertial reference system

Storing 64 bits FP into 16 bits integers

http://www-users.math.umn.edu/~arnold/disasters/

template <typename Integer>
void world_population() {

//
https://en.wikipedia.org/wiki/List_of_continents_by_population

// in 2010
std::cout << "Sizeof(Integer) : " << sizeof(Integer) <<

std::endl;

std::map<std::string, Integer> continents = {
{"africa", 1'044'107'001}, {"americas", 943'952'001},
{"asia", 4'169'860'001}, {"europe", 735'395'001},
{"oceania", 36'411'001}};

Integer total = 0;
for (auto &continent : continents) {

total += continent.second;
}
std::cout << "Total world population : " << total << std::endl;

}

world_population<uint32_t>();

7/25/18CoDaS-HEP 5

✐01_integer/integer_overflow

• How many people,
worldwide?

• Does it makes
sense?

• What might be
the problem?

• Why data are from
2010 and not
2016?

int is not integer

Representation uses a limited number of bits
 Positive numbers are just represented using their binary form

 Negative numbers often use two's complement

Properties of arithmetic types can be queried using
std::numeric_limits (C++)
 On my machine (and probably on yours)

 232 < int = int32_t <= 231-1 // 1 bit is used to store the sign

 0 < unsigned int = uint32_t <= 232

7/25/18CoDaS-HEP 6

Representing numbers that would be too large or too
small to be represented as integers
1.4e−45 to 3.4e38

Representing numbers that are not representable as
integers

Of course, floating points representations are also
subject to use only a limited number of bits.

7/25/18CoDaS-HEP 7

Speed

Accuracy:
 “Correct” results

Range:
 Large and small numbers

Portability:
 Run on different machines, giving the same answer

Ease of implementation and use
 Needs to feel natural, at least to the user

7/25/18CoDaS-HEP 8
Handbook of Floating Point Arithmetic

A number is represented exactly by:
Significand × baseexponent

By instance:

3.1415 = 31415 ×10-4

Stored in memory using a limited number of bits:

7/25/18CoDaS-HEP 9

8 bits

16 bits (half precision)

32 bits (single precision)

64 bits (double precision)

Significand:

• Mantissa

• Coefficient

Base:

• Radix

Exponent Fraction == 0 Fraction != 0 Equation

All Zeros 0, -0 Subnormal value

(Fraction starts with

an implicit 0)

(-1)sign × 2-126 ×

0.fraction

All Ones ± ∞ NaN

Otherwise Normalized value

(Fraction starts with an implicit 1)

(-1)sign×2exponent – 127

×1.fraction

7/25/18CoDaS-HEP 10

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

 Roundings to nearest
 Round to nearest, ties to even [Default Mode]– rounds to the nearest value; if the

number falls midway it is rounded to the nearest value with an even (zero) least
significant bit; this is the default for binary floating-point and the recommended
default for decimal.

 Round to nearest, ties away from zero – rounds to the nearest value; if the number
falls midway it is rounded to the nearest value above (for positive numbers) or below
(for negative numbers); this is intended as an option for decimal floating point.

 Directed roundings
 Round toward 0 – directed rounding towards zero (also known as truncation).

 Round toward +∞ – directed rounding towards positive infinity (also known
as rounding up or ceiling).

 Round toward −∞ – directed rounding towards negative infinity (also known
as rounding down or floor).

7/25/18
CoDaS-HEP

11

✐02_fpa/fpa_roundings

 The IEEE standard defines several FP exceptions
 Can be ignored  Default action is taken

 Can be trapped  Error is signaled

 Underflow: Too small to be represented as a normalized float in its format.

 If ignored, the operation results in a denormalized float or zero.

 Overflow: Too large to be represented as a float in its format.

 If ignored, the operation results in the appropriate infinity.

 Divide-by-zero: Float is divided by zero.

 If ignored, the appropriate infinity is returned.

 Invalid: Ill-defined operation, such as (0.0/ 0.0).

 If ignored, a quiet NaN is returned.

 Inexact: The result of a floating point operation is not exact, i.e. the result was rounded.
 If ignored, the rounded result is returned

7/25/18CoDaS-HEP 12

 Subnormals (or denormals) are FP smaller than the smallest normalized
FP: they have leading zeros in the significand
 For single precision they represent the range 10-38 to 10-45

 Subnormals guarantee that additions never underflow
 Any other operation producing a subnormal will raise a underflow exception if also

inexact

 Hardware is not always able to deal with subnormals
 Software assist is required: SLOW

 To get correct results even the software algorithms need to be specialized

 It is possible to tell the hardware to flush-to-zero (ftz) subnormals
 It will raise underflow and inexact exceptions

7/25/18CoDaS-HEP 13

7/25/18CoDaS-HEP 14

function KahanSum(input)
var sum = 0.0
var c = 0.0 // A running compensation for lost low-order bits.
for i = 1 to input.length do

var y = input[i] - c // So far, so good: c is zero.
// Alas, sum is big, y small, so low-order digits of y are lost.
var t = sum + y
// (t - sum) cancels the high-order part of y;
// subtracting y recovers negative (low part of y)
// Algebraically, c should always be zero.
// Beware overly-aggressive optimizing compilers!
c = (t - sum) - y
sum = t

return sum

https://en.wikipedia.org/wiki/Kahan_summation_algorithm

✐patriot/patriot.cpp (V. Innnocente)

 Kahan Summation Algorithm does not work for “ill-conditioned” sums
 In particular in an element is larger than the sum

 Other summation algorithms
 Fast2Sum (Dekker), 2Sum (Knuth et al.), …

 Products also have specific algorithms for accurate computations:
 Dekker, …

 Algorithms for computing means, variances, …

☞Handbook of Floating-Point Arithmetic

7/25/18CoDaS-HEP 15

 Or Fused Multiply-Add (FMA) : a × b + c

 Multiplier–Accumulator (MAC) hardware unit

 Performed with a single rounding (IEEE 754-2008) (instead of 2 for
one multiplication followed by an addition)

 A fast FMA can speed up and improve the accuracy of many
computations that involve the accumulation of products:
 Dot product

 Matrix multiplication

 Polynomial evaluation (e.g., with Horner's rule)

 Newton's method for evaluating functions.

 Convolutions and artificial neural networks

7/25/18CoDaS-HEP 16
https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation

https://en.wikipedia.org/wiki/IEEE_754-2008

 Inverse analysis
 based on the “ Wilkinson principle”: the computed solution is assumed to be the

exact solution of a nearby problem provides error bounds for the computed
results

 Interval arithmetic
 The result of an operation between two intervals contains all values that can be

obtained by performing this operation on elements from each interval.

 guaranteed bounds for each computed result

 the error may be overestimated

 specific algorithms

 Probabilistic approach
 uses a random rounding mode

 estimates the number of exact significant digits of any computed result

7/25/18CoDaS-HEP 17
http://www.math.twcu.ac.jp/~conf/FJWNC2015/doc/Jezequel.pdf

Operator Instruction AVX FP32 AVX FP64

+, - ADD, SUB 3 3

==, != COMISS, CMP 2,3 2,3

cast

fp32 <-> fp64

CVT 4 4

|, &, ^ AND, OR 1 1

* MUL 5 5

/, sqrt DIV, SQRT 21-29 21-45

1.f/□, 1.f/sqrt□ RCP, RSQRT 7

= MOV 1,4… 1,4…

7/25/18CoDaS-HEP 18

 man gcc /-ffast-math -- Sets the options:

 -fno-math-errno

 Do not set "errno" after calling math functions that are executed with a single instruction

 -funsafe-math-optimizations :

 assume that arguments and results are valid.

 -ffinite-math-only

 Allow re-association of operands in series of floating-point operations.

 ☞ Patriot example ?

 -fno-rounding-math

 Disable transformations and optimizations that assume default floating-point rounding behavior.

 -fno-signaling-nans

 Do not assuming that IEEE signaling NaNs may generate user-visible traps during floating-point operations.
(default)

 -fcx-limited-range: range check for complex division.

7/25/18CoDaS-HEP 19

Avoid or factorize-out division and sqrt
 if possible compile with “–Ofast” or “-ffast-math”

Prefer linear algebra to trigonometric functions

Cache quantities often used
 No free lunch: at best trading memory for cpu

Choose precision to match required accuracy
 Square and square-root decrease precision

 Catastrophic precision-loss in the subtraction of almost-equal large
numbers

7/25/18CoDaS-HEP 20

Getting popular for some machine learning application
 NVIDIA P100 can perform FP16 arithmetic at twice the throughput of

FP32.

Large number of parameters and the generally modest
accuracy required for the final output – is this image a cat? or
is this a fraudulent application?

 Training can be successful with floating point half precision
(16 bits) or with fixed point or integers (as low as 8 bits in
some cases).

Don’t use it blindly in your codes: Check first!

7/25/18CoDaS-HEP 21
http://www.theregister.co.uk/2016/11/10/short_wide_deep_but_not_high/

http://www.theregister.co.uk/2016/11/10/short_wide_deep_but_not_high/

 For some problem it does matter

 Poisson Equation -△u = f

 Finite elements

7/25/18CoDaS-HEP 22
Strzodka et al.
http://www.nvidia.com/content/nvision2008/tech_presentations/

NVIDIA_Research_Summit/NVISION08-Mixed_Precision_Methods_on_GPUs.pdf

http://www.nvidia.com/content/nvision2008/tech_presentations/

 Exploit the speed of low precision and obtain a result of high
accuracy
 Compute in high precision (cheap)

 Solve in low precision (fast)

 Correct in high precision (cheap)

 Iterate until convergence in high precision

 Now also half-precision in single precision codes
 https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-

8/

7/25/18CoDaS-HEP 23

Strzodka et al.
http://www.nvidia.com/content/nvision2008/tech_presentations/

NVIDIA_Research_Summit/NVISION08-Mixed_Precision_Methods_on_GPUs.pdf

https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/
http://www.nvidia.com/content/nvision2008/tech_presentations/

Concurrency makes it worse!
 Operations a shared variables (e.g. reduction)

 Concurrency implies unknown orders for operation

 Inherent to concurrency; does not depend on the parallel model

Worst as the degree of parallelism increases
 For instance, on GPU codes using atomics

7/25/18CoDaS-HEP 24

 Should you worry about the accuracy of every LoC you write?

 Study your problem /algorithm to understand what level of precision
is required / acceptable
 Usually the answer is already known by your community

 Verify your results / programs
 Convergence tests, statistical tests, analytical solutions, …

 Check for performance bottlenecks
 ☞ Other CoDaS’ talks

7/25/18CoDaS-HEP 25

 Optimal floating point computation: Accuracy, Precision, Speed in
scientific computing. Innocente. 2012

 Handbook of Floating-Point Arithmetic. Mueller et al. 2010

 What Every Computer Scientist Should Know About Floating-Point
Arithmetic. Goldberg. https://docs.oracle.com/cd/E19957-01/806-
3568/ncg_goldberg.html

7/25/18CoDaS-HEP 26

