The Unique Beauty of the Subatomic Landscape

and Mystery

Gerard ’t Hooft
Utrecht University
Recollections and reflections

Theme:

- Nature is more beautiful than we think

- Nature is smarter than we are

The landscape around 1965:
photon $\gamma$
spin $= 1$

Leptons
$e^-$ $\nu_e$
$\mu^-$ $\nu_\mu$
spin $= \frac{1}{2}$

anti-leptons

mesons
$\pi^+$ $\pi^-$ $\pi^0$
$K^+ K^-$
$K_L K_S$
spin $= 0$

baryons
$P^+$ $N$
$\Sigma^+$ $\Sigma^0$ $\Sigma^-$
$\Xi^0$ $\Xi^-$
spin $= \frac{1}{2}$

anti-baryons

anti-$\Omega$
spin $= \frac{3}{2}$

1969
Quantum Electrodynamics (QED) was beautiful:

\[ g_e = 2.00231930436 \ldots \]
But how did the weak force go?

Gell-Mann, Feynman, Sudarshan Marshak

Too many lines at one point: NOT RENORMALIZABLE

The Intermediate Vector Boson:
How do we deal with the mass of the IVB?
“Spontaneous symmetry breaking does not affect renormalizability”

“You have to understand the small distance structure of a theory”

What is the small distance structure of a massive Yang-Mills theory?

The gauge symmetry becomes exact, and the longitudinal mode of the vector boson behaves as a scalar particle – the Higgs!

Only the Brout – Englert - Higgs mechanism can generate renormalizable massive vector particles such as the Intermediate Vector Bosons of the weak interactions.
Now work out the details: will the renormalized theory be unitary? What are the Feynman rules? What are the counter terms?

**Feynman rules:**
How to check self-consistency and unitarity?
- Veltman: use diagrammatic cutting rules
Which are the correct Feynman rules?
- Faddeev-Popov, DeWitt: use path integrals
Will there be anomalies?

The $\pi^0 \rightarrow \gamma \gamma$ decay was known to violate the symmetry laws of the Lagrangian that generates its Feynman rules. Such an anomaly could jeopardize the renormalizability of massive vector theories. How can we assure that such anomalies stay harmless? Should the small-distance behavior provide answers?

This was an important reason for studying the scaling behavior of gauge theories. What is their small-distance structure?

If they stay regular, should the absence of 1-loop anomalies then not be sufficient to guarantee their absence at higher loops?
Indeed, in 1971, our Feynman rules could be used to calculate what happens if you **scale** all momenta $k_\mu$ by a factor $\lambda$. Pure gauge theories behave fine (they are now called “asymptotically free”)

In modern words: $\beta(g) < 0$

An elementary calculation. Why was that nowhere published before?

Did nobody take notice of off-shell physics?

Anyway, there are problems when there are fermions or scalars around, and I was not able to prove that asymptotic freedom would ensure absence of higher order anomalies …

There was a better approach:

*Add to the theory a 5th dimension!* Take $k_5 = \Lambda$ and use diagrams with this $k_5$ going around in a loop as regulator diagrams. This works to renormalize all 1-loop diagrams without anomalies
But what about higher loop diagrams? It would be elegant if you could use 6, 7, or more dimensions. But this did not work!

A last, desperate attempt:

Take $4 + \varepsilon$ dimensions and use $\varepsilon$ as a regulator: Dimensional renormalization!

We were led to the following beautiful discoveries:
All quantized field theories are **renormalizable** iff they contain
- vector fields in the form of Yang-Mills filed,
- scalar fields and spinor fields in the form of representations of
the YM gauge groups,

where the scalar fields may give mass to the vector particles via the
Brout-Englert-Higgs mechanism,

*Although also composite spin 0 particles can give mass: the proton owes
its mass to a meson quadruplet, \([\sigma, \pi^\pm, \pi^0]\) (quark bound states).*

and where the ABJ anomalies cancel out.

This gives elementary particles of spin 0, \(\frac{1}{2}\) and 1.

No other field theories are renormalizable.

*Renormalizability* means nothing more than that the effective coupling
strengths run logarithmically when we scale the momenta. If we want
them to run to zero at high energies, this gives much more stringent
conditions, which are met nearly but not entirely by the SM:

**ASYMPTOTIC FREEDOM**

The more modern landscape:
The Standard Model

**Generation I**

- Leptons: $\nu_e$, $e$
- Quarks: $u$, $u$, $u$, $d$, $d$, $d$

**Generation II**

- Leptons: $\nu_\mu$, $\mu$
- Quarks: $c$, $c$, $c$, $s$, $s$, $s$

**Generation III**

- Leptons: $\nu_\tau$, $\tau$
- Quarks: $t$, $t$, $t$, $b$, $b$, $b$

**Gauge Bosons**

- $Z^0$
- $W^+$
- $W^-$
- $\gamma$

**Higgs**

**Graviton**
This model explains in a magnificent way all observed strong, weak and electromagnetic interactions

It predicted/predicts totally new phenomena:

- Instanton effects in the strong and the weak force:
  • mass splittings in the pseudoscalar and the scalar sector of QCD
  • baryon number non-conservation during early Big Bang

- Running coupling strengths
  • strong force gets weaker at higher energies
  • 3 forces unite at extremely high energies

- Anomalies must always cancel out
  • whenever new forces or fermionic particles (new generations) are added to the scheme.
Who would have suspected such a powerful theory in the 1960s?

And, there is intrinsic beauty:

\[ SU(3) \times SU(2) \times U(1) \rightarrow SU(5) \rightarrow SO(10) \]

\((\text{left rotating})\)

\[ \nu_e \nu_e u_r u_g u_b \]
\[ e^- e^- d_r d_g d_b \]
\[ d_r d_g d_b e^+ \]
\[ u_r u_g u_b u_b \]
\[ v_e \]

\times 3 \text{ generations}

Who would have suspected such a powerful theory in the 1960s?
None of this could have been possible without the magnificent achievements of the experimental laboratories, in particular CERN.

During the most exciting periods when these discoveries were made, the CERN theory group was very strongly involved.
What will the landscape of the 21st century be like?
Will it be as beautiful as today’s or more beautiful?
Will it include super symmetry, or super strings?
Will it be a

THEORY of EVERYTHING
THANKS to CERN
Total cross sections

$e^+ e^- \rightarrow \text{hadrons}$

$e^+ e^- \rightarrow \mu^+ \mu^-$

$e^+ e^- \rightarrow \gamma \gamma$

\begin{align*}
\sqrt{s}/s & > 0.85 \\
\sqrt{s} \ (\text{GeV})
\end{align*}