

WORKSHOP “PHYSICS FOR HEALTH IN EUROPE”

Contribution ID: 82

Type: **Oral presentations**

Radiation Protection Aspects Related to Lutetium-177 Use in Hospitals

Wednesday, 3 February 2010 09:20 (10 minutes)

^{177}Lu is typically produced by direct irradiation with neutrons from enriched ^{176}Lu . During direct irradiation of ^{176}Lu remarkable amount of ^{177}mLu ($T_{1/2} = 160$ d) is produced.

The ^{177}mLu content in the labelling solution is mainly depending from the two factors: irradiation time and how much time has passed after end of the irradiation. Typically carrier added (c.a.) ^{177}Lu is produced in the irradiations positions, where neutron flux is 1.3×10^{14} neutrons $\text{cm}^{-2} \text{s}^{-1}$ and irradiation time is 14 days. Reported values for $^{177}\text{mLu}/^{177}\text{Lu}$ ratio from several reactors varies between 0,01% - 0,02%. The hospitals are using their ^{177}Lu up to one week after end of the irradiation when $^{177}\text{mLu}/^{177}\text{Lu}$ ratio has doubled.

^{177}Lu is mainly used to peptide labelling. Typical dose is 7 – 9 GBq. If $^{177}\text{mLu}/^{177}\text{Lu}$ ratio is 0,02%, it means that a dose includes 1,4 – 1,8 MBq ^{177}mLu .

To handle radioactive materials, which are above free limit, it is required to have a radioactive material licence. For ^{177}mLu free limit is 1 MBq, if free limit is exceeded the nuclide needs specific licence or licence as by product. Hospitals which are using over 5 GBq c.a. ^{177}Lu should have radioactive licence also for ^{177}mLu .

During labelling process and treatment the loss of radioactivity is typically 2 to 5% of activity which is equal to 90 kBq ^{177}mLu . The release limit is 10 Bq/g waste. All waste should be collected and shipped to radioactive deposit or let to be decayed.

A patient is going to extract approximately 80% dose (1,45 MBq) through urine relative fast. The highest allowed radioactive concentration in the sewage water canal is 50 kBq/m³. It means that patient dose need to be diluted to 30 m³ after cooling time, which is required to ^{177}Lu decay.

Please submit a short bio (max 1500 characters)

short bio

Last Name

Henkelmann

Institution

Isotope Technologies Garching

First Name(s)

Richard

Telephone

+4928913908

Address

Lichtenbergstrasse 1, 85748 Garching, Germany

E-mail address

richard.henkelman@itm.ag

Author: Dr HENKELMANN, Richard (Isotope Technologies Garching)

Co-authors: Dr HEY, Andreas (Isotope Technologies Garching); Dr ZHERNOSEKOV, Konstantin (Paul Scherrer Institut); Mr BUCK, Oliver (Isotope Technologies Munich Ag); Dr NIKULA, Tuomo (Isotope Technologies Munich Ag)

Presenter: Dr HENKELMANN, Richard (Isotope Technologies Garching)

Session Classification: Session 2: Radioisotopes in diagnostics and therapy

Track Classification: Radioisotopes in diagnostics and therapy