

BRIDGING SCIENCE WITH LIFE

Physics for Health, CERN, February 2010

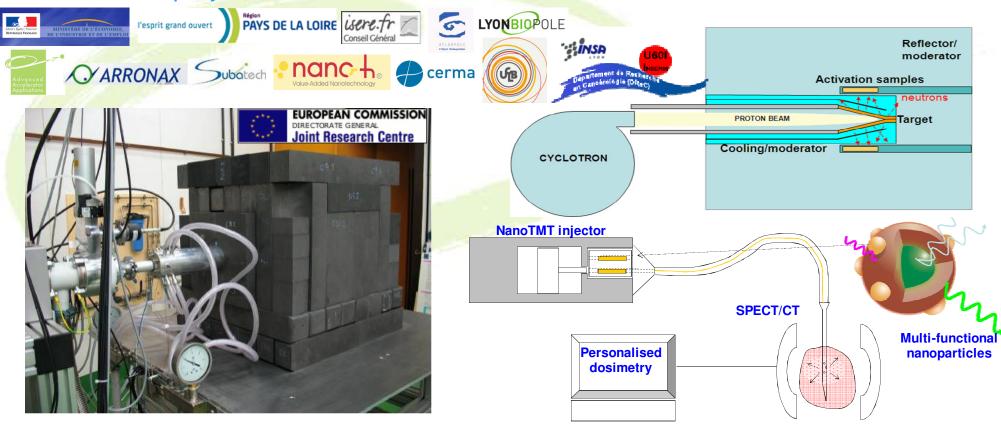
Technical evaluation of an acceleratordriven production of Mo-99 for Tc-99m generators at CERN (MolyPAN project)

S. Buono, N. Burgio, L. Maciocco



Advanced Accelerator Applications (AAA)

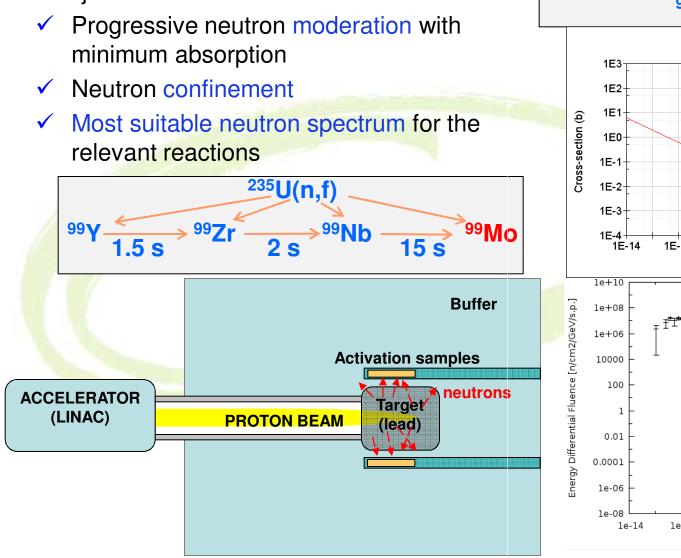
- AAA has been founded in 2002 (it can be considered a CERN "Spin-off")
- The idea at the origin of AAA was the exploitation of the Adiabatic Resonance Crossing patent, developed at CERN by Carlo Rubbia and his team (which included AAA founder Stefano Buono), with the aim of efficiently producing short-lived neutron-activated elements for medical applications using particle accelerators
- In other to support its R&D activity, a commercial activity has been set up for the production and distribution of FDG for PET scan
- AAA is nowadays a European leader in the PET tracers production and distribution.
- Currently AAA is involved in 27 research projects with 69 partners (46% private and 54% public)
- AAA's R&D focuses on innovative diagnostic (molecular imaging) and therapeutic (personalised medicine).



Application of the ARC method in Brachytherapy

Since 2003 AAA and its partners are working on the development of an innovative brachytherapy technique using nanoparticles activated in a cyclotron driven neutron activator (see poster session)

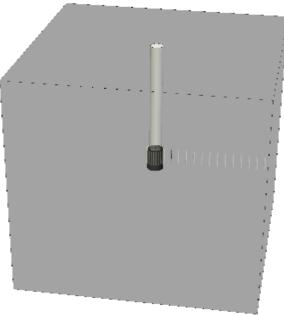
THERANEAN project



Mo-99 production from a particle accelerator

- The worldwide supply chain of Mo-99 is essentially based on the production from 5 nuclear research reactors that are approaching the end of their operational lifetime
- The ageing of the installations are inducing unscheduled shutdowns that provoke severe shortage of Mo-99, hitting the nuclear medicine community
- As a consequence, the feasibility of a Mo-99 production cycle based on particle accelerators is being assessed, as it may presents many advantages in terms of safety, cost, time to market as well as environmental and proliferation issues

Principle of operation


 $^{98}Mo(n,\gamma) \rightarrow ^{99}Mo$ Incident neutron data / JEFF 3.1 / Mo98 / MT=102 : (z,g) radiative capture / Cross section 1E-12 1E-10 1E-8 1E-6 1E-4 0.01 Incident Energy (GeV) Bare Target 🛏 Activator Irradiation Channel 0.01 1 le-12 le-10 le-08 le-06 0.0001 Neutron Energy [GeV]

Physics for Health, CERN, February 2010

Monte Carlo model of the 1 GeV activator

- MCNPX 2.5.0 (JEFF 3.1 cross sections) and FLUKA 2008.3B were used in a comparative way
- > The activator model is made of 4 main components
 - ✓ Proton beam line
 - ✓ Cylindrical liquid Lead target (h=30 cm, r=10 cm)
 - Buffer block (300 x 300 x 300 cm³)
 - Irradiation channels (r= 1 cm, h= 20 cm) uniformly filled with the activation sample. First ring at 1 cm from the target, next series placed at a radial step of 10 cm
- Three activator configurations were analysed
 - Lead buffer (best ARC effect, worst moderation)
 - Graphite buffer (good moderation, low absorption)
 - Water buffer (best moderation, worst absorption)
- Neutron target materials
 - ✓ Natural (23.8%)/ Enriched (99.9% ⁹⁸Mo) Mo oxide
 - ✓ Low (3% ²³⁵U) /High (100% ²³⁵U)-Enriched Uranium

Summary of activator performances

According to Monte Carlo codes, the graphite configuration gives the best results both for neutron-capture and for fission production of ⁹⁹Mo

	Saturation yield [GBq/g/mA]										
Case	Nat Mo	Enriched Mo	LEU (3%)	HEU (100%)							
Lead	9	28	6	-							
Graphite	15	46	106	1730							
Water	6	27	62	-							

Effect of LEU target optimisation (MCNPX)

- A major improvement of the HEU/LEU yield can be obtained
 - ✓ by using the highest possible enrichment for LEU (20%)
 - ✓ with an optimisation of the target assembly (factor 20 on LEU-20% according to FLUKA) due to reduction of self-shielding effects
 - In the following estimations, a factor 0.3 has been applied to these figures (structural components, cooling, temperature effects etc.)

	⁹⁹ Mo Saturation yield [GBq/g/mA]				
Case	HEU (100% ²³⁵ U)	LEU (19.99% ²³⁵ U)			
Thick uniform cylinder (r= 1 cm h=20cm)	1730	707*			
Thin hollow cylinder 125 um thick (r _{max} = 0.9 cm, h=20 cm).	42600	14800			

* Extrapolated from results with LEU-3%

Comparison of reactor and activator ⁹⁹Mo production

	- Inp	out data	Derived	data						
Production method	Flux	Target	Mo-99 Satur. Yield	Irrad Time	Target mass per batch	Proc time	A- EOP per g of Mo	A tot EOI (EOI)	Weekly capac. (6 days)	Share of world market
	[n/cm2/s]		Ci/g	days	g	days	Ci/g	kCi	kCi	%
Reactor	\frown	HEU-98%	269.8	4	300	1	CF	51.4	11.3	113%
(typical n flux in	2.0E+14	LEU-20%	93.7	4	300	1	CF	17.9	3.9	39%
Petten)		Mo-98 ox	0.7	4.5	2000	0.5	0.4	1.0	0.2	2%
GRAPHITE		HEU-98%	345.4	4	364	1	CF	79.9	17.6	176%
activator 3x3x3 m	(3.2E+14)	LEU-20%	120.0	4	364	1	CF	27.7	6.1	61%
(1 GeV-1mA)		Mo-98 ox	1.0	4.5	20000	0.5	0.6	13.3	2.9	29%

Comparison based on 1 mA current (comparable neutron fluxes), but technically possible to use higher currents (up to 4 mA?)

Maximum LEU enrichment (20%)

Comparison of reactor and activator ⁹⁹Mo production

	- Inp	out data	Derived	data						
Production method	Flux	Target	Mo-99 Satur. Yield	Irrad Time	Target mass per batch	Proc time	A- EOP per g of Mo	A tot EOI (EOI)	Weekly capac. (6 days)	Share of world market
	[n/cm2/s]		Ci/g	days	g	days	Ci/g	kCi	kCi	%
Reactor		HEU-98%	269.8	4	300	1	CF	51.4	11.3	113%
(typical n flux in	2.0E+14	LEU-20%	93.7	4	300	1	CF	17.9	3.9	39%
Petten)		Mo-98 ox	0.7	4.5	2000	0.5	0.4	1.0	0.2	2%
GRAPHITE		HEU-98%	345.4	4	364	1	CF	79.9	17.6	176%
activator 3x3x3 m	3.2E+14	LEU-20%	120.0	4	364	1	CF	27.7	6.1	61%
(1 GeV-1mA)		Mo-98 ox	1.0	4.5	20000	0.5	0.6	13.3	2.9	29%

Reactor LEU fission yields based on typical thermal neutron cross-section (possibly overestimated even for optimised LEU targets)

- HEU yield (exact figure not found in literature) scaled with the ²³⁵U content and with the yield ratio HEU/LEU from activator Monte Carlo simulation (self-shielding effects)
- Activator fission yields based on results on optimised HEU/LEU target scaled of a factor 0.3 to take into account effects of target structure, cooling etc.

Comparison of reactor and activator ⁹⁹Mo production

	- Inp	out data	Derived	data						
Production method	Flux	Target	Mo-99 Satur. Yield	Irrad Time	Target mass per batch	Proc time	A- EOP per g of Mo	A tot EOI (EOI)	Weekly capac. (6 days)	Share of world market
	[n/cm2/s]		Ci/g	days	g	days	Ci/g	kCi	kCi	%
Reactor		HEU-98%	269.8	4	300	1	CF	51.4	11.3	113%
(typical n flux in	2.0E+14	LEU-20%	93.7	4	300	1	CF	17.9	3.9	39%
Petten)		Mo-98 ox	0.7	4.5	2000	0.5	0.4	1.0	0.2	2%
GRAPHITE		HEU-98%	345.4	4	364	1	CF	79.9	17.6	176%
activator 3x3x3 m	3.2E+14	LEU-20%	120.0	4	364	1	CF	27.7	6.1	61%
(1 GeV-1mA)		Mo-98 ox	1.0	4.5	20000	0.5	0.6	13.3	2.9	29%

Reactor ⁹⁸Mo(n,γ)⁹⁹Mo cross section estimated equal to the thermal cross section. Effect of epithermal neutrons (factor 2 according to *Ryabchicov et al.*) considered compensated by self-shielding effects.

Activator ⁹⁸Mo(n,γ)⁹⁹Mo yield estimated with MCNPX (the most conservative estimate) at full load (self-shielding effect included)

Comparison of reactor and activator ⁹⁹Mo production

	- Inp	out data	Derived	data						
Production method	Flux	Target	Mo-99 Satur. Yield	Irrad Time	Target mass per batch	Proc time	A- EOP per g of Mo	A tot EOI (EOI)	Weekly capac. (6 days)	Share of world market
	[n/cm2/s]	141	Ci/g	days	g	days	Ci/g	kCi	kCi	%
Reactor		HEU-98%	269.8	4	300		CF	51.4	11.3	113%
(typical n flux in	2.0E+14	LEU-20%	93.7	4	300	1	CF	17.9	3.9	39%
Petten)		Mo-98 ox	0.7	4.5	2000	0.5	0.4	1.0	0.2	2%
GRAPHITE		HEU-98%	345.4	4	364	1	CF	79.9	17.6	176%
activator 3x3x3 m	3.2E+14	LEU-20%	120.0	4	364	1	CF	27.7	6.1	61%
(1 GeV-1mA)		Mo-98 ox	1.0	4.5	20000	0.5	0.6	13.3	2.9	29%

Based on a 5-days weekly cycle

- 1 day (24h) of processing time for fission-produced Mo
- 0.5 days (12h) processing time assumed for activated Mo

Comparison of reactor and activator ⁹⁹Mo production

	Inp	out data	Derived	data						
Production method	Flux	Target	Mo-99 Satur. Yield	Irrad Time	Target mass per batch	Proc time	A- EOP per g of Mo	A tot EOI (EOI)	Weekly capac. (6 days)	Share of world market
	[n/cm2/s]		Ci/g	days	g	days	Ci/g	kCi	kCi	%
Reactor		HEU-98%	269.8	4	300	1	CF	51.4	11.3	113%
(typical n flux in	2.0E+14	LEU-20%	93.7	4	300	1	CF	17.9	3.9	39%
Petten)		Mo-98 ox	0.7	4.5	2000	0.5	0.4	1.0	0.2	2%
GRAPHITE		HEU-98%	345.4	4	364	1	CF	79.9	17.6	176%
activator 3x3x3 m	3.2E+14	LEU-20%	120.0	4	364	1	CF	27.7	6.1	61%
(1 GeV-1mA)		Mo-98 ox	1.0	4.5	20000	0.5	0.6	13.3	2.9	29%

Typical value of HEU load in reactor ~300 g according to available information

- HEU/LEU load of 364 g in the activator calculated with full load of optimised (thin) target in first ring.
- Simulations carried out at full load in the Mo-oxide irradiation (to take into account distance and neutron self-shielding). 10 times less loading capacity considered in reactor

Comparison of reactor and activator ⁹⁹Mo production

	- Inp	out data	Derived	data						
Production method	Flux	Target	Mo-99 Satur. Yield	Irrad Time	Target mass per batch	Proc time	A- EOP per g of Mo	A tot EOI (EOI)	Weekly capac. (6 days)	Share of world market
	[n/cm2/s]	244	Ci/g	days	g	days	Ci/g	kCi	kCi	%
Reactor		HEU-98%	269.8	4	300	1	CF	51.4	11.3	113%
(typical n flux in	2.0E+14	LEU-20%	93.7	4	300	1	CF	17.9	3.9	39%
Petten)		Mo-98 ox	0.7	4.5	2000	0.5	0.4	1.0	0.2	2%
GRAPHITE		HEU-98%	345.4	4	364	1	CF	79.9	17.6	176%
activator 3x3x3 m	3.2E+14	LEU-20%	120.0	4	364	1	CF	27.7	6.1	61%
(1 GeV-1mA)		Mo-98 ox	1.0	4.5	20000	0.5	0.6	13.3	2.9	29%

⁹⁹Mo delivered as Ammonium Molybdate in the HEU-LEU cases after target processing. Not relevant for specific activity in generators (carrier free)

- Carrier mass equal to target mass for ⁹⁸Mo. Max theoretical amount of Mo in a 10 g Alumina generator = 0.2 g.
- ~300 mCi standard generators theoretically possible with ⁹⁸Mo in a 4 mA activator, but in general alternative generator technology necessary for ⁹⁸Mo activation

Comparison of reactor and activator ⁹⁹Mo production

	- Inp	out data	Derived	data						
Production method	Flux	Target	Mo-99 Satur. Yield	Irrad Time	Target mass per batch	Proc time	A- EOP per g of Mo	A tot EOI (EOI)	Weekly capac. (6 days)	Share of world market
	[n/cm2/s]		Ci/g	days	g	days	Ci/g	kCi	kCi	%
Reactor		HEU-98%	269.8	4	300	1	CF	51.4	11.3	113%
(typical n flux in	2.0E+14	LEU-20%	93.7	4	300	1	CF	17.9	3.9	39%
Petten)		Mo-98 ox	0.7	4.5	2000	0.5	0.4	1.0	0.2	2%
GRAPHITE		HEU-98%	345.4	4	364	1	CF	79.9	17.6	176%
activator 3x3x3 m	3.2E+14	LEU-20%	120.0	4	364	1	CF	27.7	6.1	61%
(1 GeV-1mA)		Mo-98 ox	1.0	4.5	20000	0.5	0.6	13.3	2.9	29%

According to the present estimation (not taking into account processing losses), a continuous operation of a reactor like Petten-HFR loaded with 300 g of HEU would cover 113% of the total demand (to be compared with actual figures)

Better figures are obtained with the activator, mainly due to the higher neutron flux and to the higher assumed loading capability, allowing to largely cover the total world demand with 1 mA of proton current on 364 g of HEU

Comparison of reactor and activator ⁹⁹Mo production

NOT IN PROPERTY	- Inp	out data	Derived	data						
Production method	Flux	Target	Mo-99 Satur. Yield	Irrad Time	Target mass per batch	Proc time	A- EOP per g of Mo	A tot EOI (EOI)	Weekly capac. (6 days)	Share of world market
	[n/cm2/s]		Ci/g	days	g	days	Ci/g	kCi	kCi	%
Reactor		HEU-98%	269.8	4	300	1	CF	51.4	11.3	113%
(typical n flux in	2.0E+14	LEU-20%	93.7	4	300	1	CF	17.9	3.9	39%
Petten)		Mo-98 ox	0.7	4.5	2000	0.5	0.4	1.0	0.2	2%
GRAPHITE		HEU-98%	345.4	4	364	1	CF	79.9	17.6	176%
activator 3x3x3 m	3.2E+14	LEU-20%	120.0	4	364	1	CF	27.7	6.1	61%
(1 GeV-1mA)		Mo-98 ox	1.0	4.5	20000	0.5	0.6	13.3	2.9	29%

Concerning LEU-⁹⁹Mo production, results in the activator are scaled of a factor 3 with respect to HEU (same factor assumed for the reactor, to be compared with actual figures)

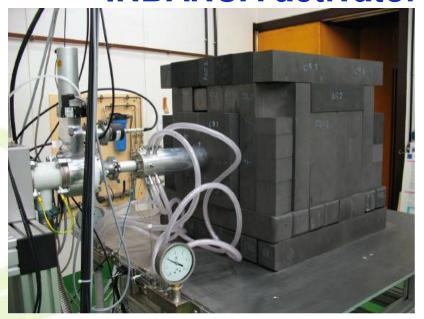
The global world demand could be covered with 364 g-load of LEU-20% and a 2 mA activator

Comparison of reactor and activator ⁹⁹Mo production

And a second second second	- Inp	out data	Derived	data						
Production method	Flux	Target	Mo-99 Satur. Yield	Irrad Time	Target mass per batch	Proc time	A- EOP per g of Mo	A tot EOI (EOI)	Weekly capac. (6 days)	Share of world market
	[n/cm2/s]		Ci/g	days	g	days	Ci/g	kCi	kCi	%
Reactor		HEU-98%	269.8	4	300	1	CF	51.4	11.3	113%
(typical n flux in	2.0E+14	LEU-20%	93.7	4	300	1	CF	17.9	3.9	39%
Petten)		Mo-98 ox	0.7	4.5	2000	0.5	0.4	1.0	0.2	2%
GRAPHITE		HEU-98%	345.4	4	364	1	CF	79.9	17.6	176%
activator 3x3x3 m	3.2E+14	LEU-20%	120.0	4	364	1	CF	27.7	6.1	61%
(1 GeV-1mA)		Mo-98 ox	1.0	4.5	20000	0.5	0.6	13.3	2.9	29%

Concerning ⁹⁸Mo(n,γ)⁹⁹Mo production, much better figures are found with the activator at 1 mA clearly due to assumed higher loading capabilities (but also to better specific yield)

The global world demand could be covered with 20 Kg-load of ⁹⁸Mo-oxide and a 4 mA activator. The load of 40 kg is likely feasible without degrading the system performances. In this case 2 mA would be enough to cover the world demand


Conclusions

- According to preliminary Monte Carlo estimations, a Lead target-graphite buffer activator coupled with a proton LINAC would allow to cover the whole world demand of 99Mo with
 - ✓ 350 g of LEU-20% and a proton beam of 2 mA (700 g of LEU and 1 mA possible)
 - ✓ 20 Kg of 98 Mo-oxide and a proton beam of 4 mA.
- Available design studies (Energy Amplifier, Eurotrans, ESS, Eurisol) and experimental evidences (Megapie) support the technical feasibility of a 1-4 MW liquid metal target.
- The problem of the nuclear-waste (activated lead target) management must be considered
- Alternative technologies for the use of ⁹⁸Mo-oxide carrier in ^{99m}Tc generators are necessary (encouraging results are available for PZC-based generator)
- Technical and economical aspects need to be further assessed

Comparative results of MCNPX and FLUKA on the INBARCA activator

- A comparison of ⁹⁸Mo(n,γ)⁹⁹Mo yields with experimental results on the IBARCA activator show a tendency of both codes to underestimating experimental results, especially with harder spectra (Target alone)
- In the case of the enriched Mo oxide, MCNPX underestimates the experimental results of a factor 6

Case	Comple	Saturation yield [kBq/g/µA]							
	Sample	MCNPX	FLUKA	EXP					
Target alone		19	78	307					
Lead-buffer	Nat Mo foil	395	319	629					
		401	558	1000					
All graphite	Enriched Mo-98 oxide	338	Cross sec. NA	1890					

Physics for Health, CERN, February 2010 19

36 MeV-10 mA (CLUSTER type) ⁹⁹Mo prod capacity

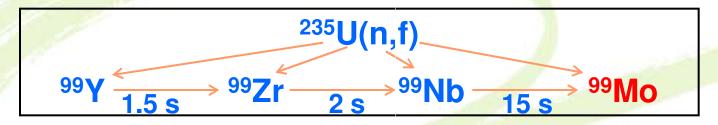
	Input o	lata	Derived	data	_					
Production method	Flux	Target	Mo-99 Satur. Yield	Irrad Time	Target mass per batch	Proc time	A- EOP per g of Mo	A tot EOI (EOI)	Weekly capac. (6 days)	Share of world market
	[n/cm2/s]		Ci/g	days	g	days	Ci/g	kCi	kCi	%
36 MeV – 10 mA (CLUSTER) activator	1.2E+13	Mo-98 ox	0.05	4.5	1000.0	0.5	0.31	0.347	0.076	0.8%
70 MeV – 10 mA (CLUSTER) a <mark>ctivator</mark>	3.0E+13	Mo-98 ox	0.13	4.5	1000.0	0.5	0.76	0.870	0.190	1.9%

Data at 36 MeV based on experimental data from the INBARCA activator

> Yield at 70 MeV extrapolated on the base of simulated neutron flux (factor 2.5)

Comparative results of MCNPX and FLUKA

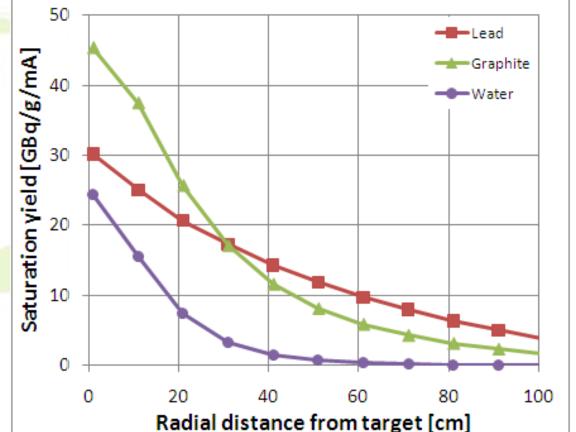
	⁹⁸ Mo(n,γ) ⁹⁹	Mo on natura [atoms/sp]	al Mo oxide	Fission on ²³⁵ U [fissions/sp]			
Activator Model	MCNPX	FLUKA	MCNPX/ FLUKA	MCNPX	FLUKA	MCNPX/ FLUKA	
Lead Buffer	7.10E-06	3.15E-05	1/4.5	0.39	0.33	1.2	
Graphite Buffer	1.11E-05	5.09E-05	1/4.6	0.99	0.83	1.2	
Water Buffer	4.28E-06	2.22E-05	1/5.2	0.49	0.44	1.1	


Higher ⁹⁸Mo(n,γ)⁹⁹Mo yield estimated by Fluka (factor 5), possibly related to crosssection modeling in the resonance region

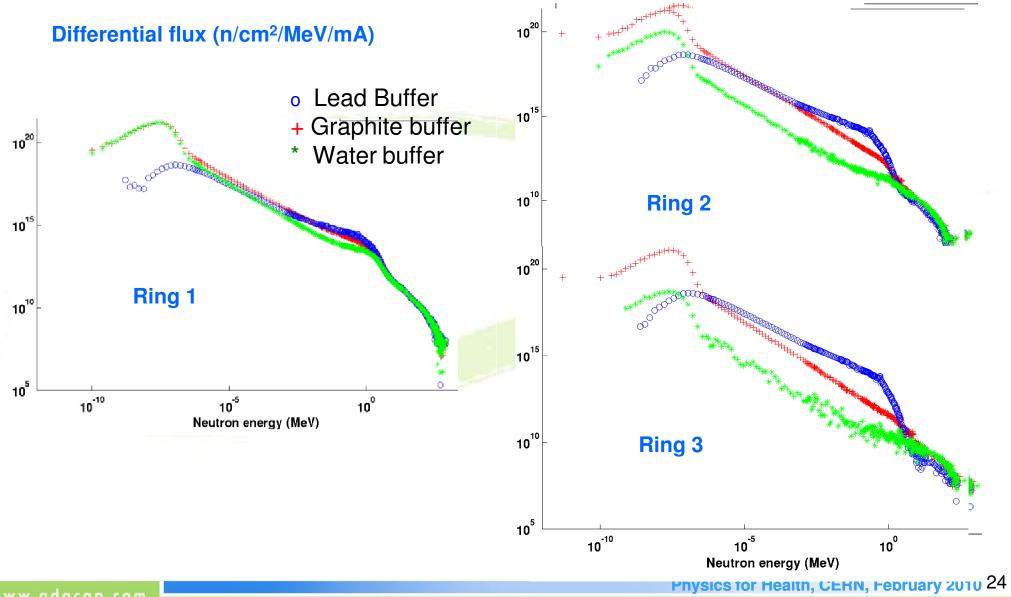
- Rather good agreement on ²³⁵U fission yields (slightly better figures from MCNPX)
- Both codes estimate the best yield for both reactions in the graphite-buffer configuration

99Mo fission yield

The ⁹⁹Mo yields from ²³⁵U(n,f) has been estimated considering the decay chain of all the fission products decaying into ⁹⁹Mo


Calculations confirm the cumulative 6% yield of ⁹⁹Mo per fission typical of thermal neutron fission also for the activator spectrum

⁹⁸Mo oxide loading capacity


- As expected, Lead shows the smoother reduction of the yield with the distance (ARC effect)
- Graphite shows a factor 0.6 decrease in the first 3 rings, so guaranteeing a good loading capability (minimum 20 Kg in the first 3 rings)
- Water show a high neutron absorption with a rapid decrease of the yield with the distance (lower loading capabilities)

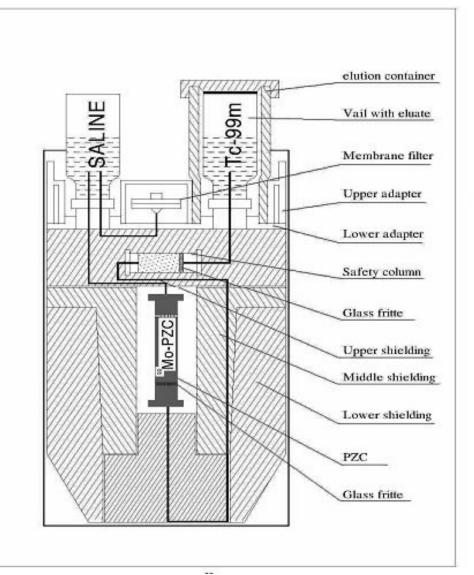
Variation of the 98Mo(n,γ)99Mo yield with the distance from the target in the three configurations (machine at full load, total of 95 Kg of Mo oxide)

Neutron flux variation with distance`

Provision of ⁹⁸Mo oxide / LEU

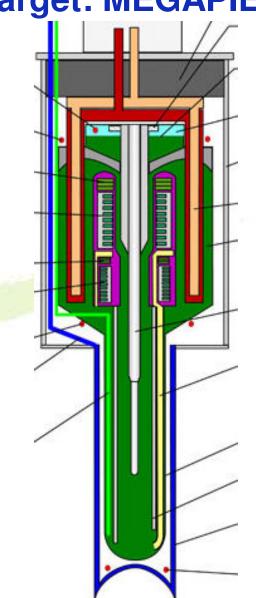
- The possibility to produce large amounts of ⁹⁸Mo oxide should be assessed
- ➤ The cost of a small quantity (~1 g) is at present around 2.5 \$/mg. This would imply a cost of 50 M\$ per 1 activator load of 20 Kg. A large scale production of ⁹⁸Mo oxide is expected to significantly reduce the price (at least a factor 10 giving a cost in the order of 5 M€ per load)
- The technical/economical feasibility of recuperating the ⁹⁸Mo-oxide from the used generators should be assessed
- A cost analysis for the supply of LEU at different enrichment should be done

Alternative methods for 98Mo-produced generators


- Post-elution concentration techniques
 - Elution with Acetone instead of saline solution
 - ✓ Tandem-type generator
- Zirconium-based adsorbent instead of alumina column
 - Zr gel-based generators
 - Poly Zirconium Compound (PZC)-based generators

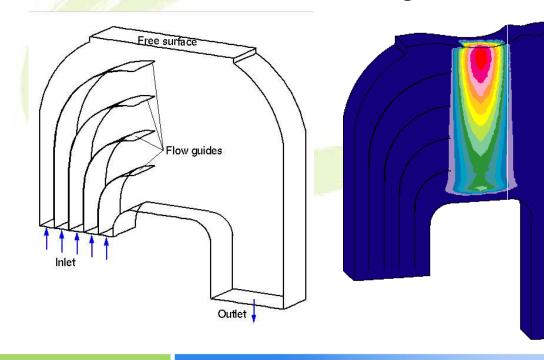
First proposed in 1994 (JAERI-KAKEN) and extensively tested and optimised by the FNCA (Forum for Nuclear Cooperation in Asia) research group in 2003-2006

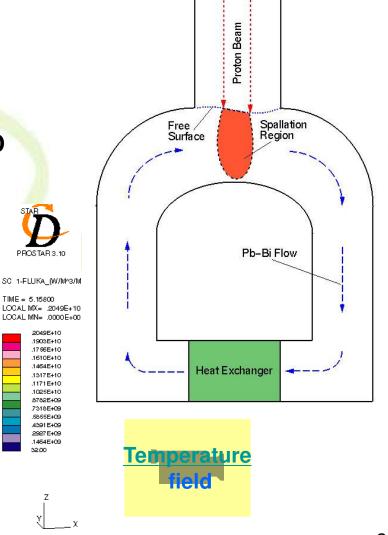
- Capable of trapping up to 250 mg of Mo per g of PZC (more than 10 times higher of Al columns)
 - Pre-clinical and clinical tests results reported by FNCA partners are in compliance with European pharmacopeia


The ⁹⁹Mo-^{99m}Tc PZC generator

Accelerate Feasibility of a 1-4 MW liquid-metal target: MEGAPIE

- Designed to be coupled with a 590 MeV 2 mA cyclotron (PSI-SINQ)
- (Dual) Window-type Lead-Bismuth target (D~20 cm, L~5 m)
- Electromagnetic pumps
- The MEGAPIE target has been completed and routinely tested in 2006 in PSI at 590 MeV and 1.3 mA.
- AAA people have participated to the design and the engineering of the target

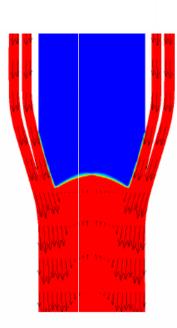


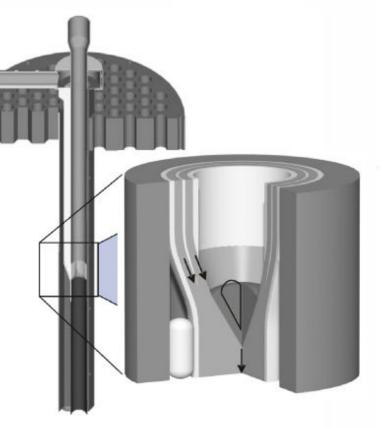


Feasibility of a 1-4 MW liquid-metal target: **ENERGY AMPLIFIER Windowless Target**

TIME = 5.15800

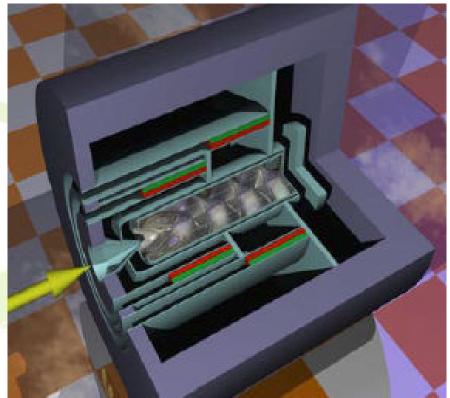
- Designed to be coupled with a 600 MeV 6 mA cyclotron
- Windowless-type Lead-Bismuth target (D~30 cm)
- Simulated with AAA in-house moving-mesh free- \succ surface algorithm (the only existing complete CFD simulation of a windowless target

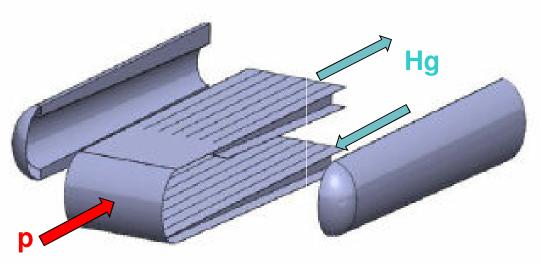




Feasibility of a 1-4 MW liquid-metal target: EUROTRANS Windowless Target

- Designed to be coupled with a 600 MeV 6 mA cyclotron
- Windowless-type Lead-Bismuth target (D~15 cm))
- Needs a swept beam to avoid heat deposit in the central recirculation region
- Design still in progress




Feasibility of a 1-4 MW liquid-metal target: EURISOL

- Designed to be coupled with a 1 GeV 4 mA accelerator
- Window-type (D~10 cm) (also windowless considered)
- Hg or Lead-Bismuth as target material
- According to available results, preliminary design with a Hg windowtype target at 1 GeV and 4 mA showed thermal and mechanical feasibility

Feasibility of a 1-4 MW liquid-metal target: EUROPEAN SPALLATION SOURCE

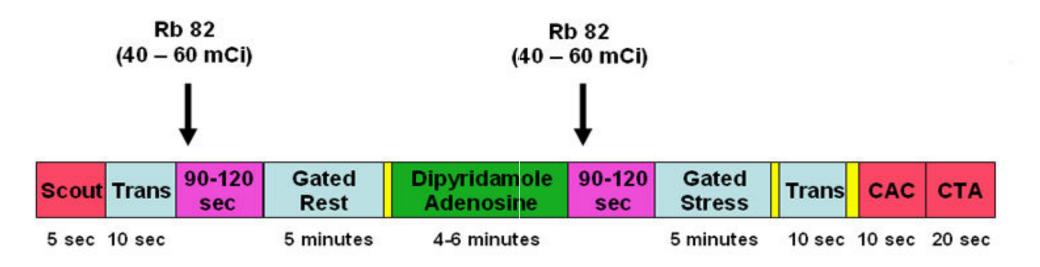
- Designed to be coupled with a 1/1.3 GeV 5 mA pulsed LINAC
- Window-type (D~10 cm) Hg proton target
- Current design status to be assessed

CardioGen-82

- Contains Sr-82 in a lead shielded column
 - Sr-82 half life is 25 days
- The "daughter" is Rb-82 chloride
 - half life 75 sec
- Rb-82 kinetics:
 - After iv injection, Rb-82 rapidly clears the blood
 - Extracted similar to potassium
 - Activity in myocardium within first minute
 - Defects visualized 2-7 minutes after injection
 - Uptake is also observed in the kidney, liver, spleen, and lung
- Must be used with an infusion system
- Same delivered dose for rest and stress imaging
- On demand availability
- CardioGen-82® package insert

www.adacap.com

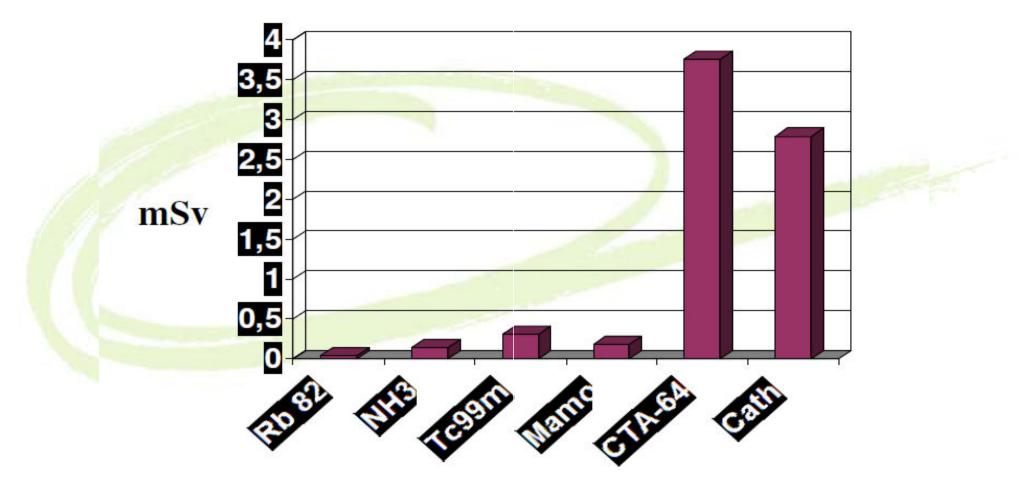
Attenuation Corrected Tc-99m Sestamibi SPECT Compared with Rb-82 Myocardial Perfusion PET


The Results:

	PET	SPECT with AC
Overall Accuracy	90%	80%
Left anterior descending artery (LAD)	90%	76%
Left circumflex artery (LCx)	83%	78%
Right Coronary Artery (RCA)	90%	77%
All Coronaries	88%	77%
Image Quality (Excellent)	80%	24%
No Artifacts	90%	50%

Example CardioGen-82 PET/CT Protocol⁹

Approximately 35 minutes



9 Di Carli MF. Major achievements in nuclear cardiology:XI. Advances in positron emission tomography. J Nucl Cardiol. 2004;11:719-732.

A gated SPECT using Tc-99 products requires 2 steps of 1 hour each (in 2 different days for better dosimetry)

Breast and skin dose from noninvasive imaging studies

Castronovo et al. In Cardiac PET & PET/CT Imaging. Di Carli/Lipton. 2007