
Production of innovative radionuclides at ARRONAX and ²¹¹At RIT

<u>F. Haddad</u> GIP ARRONAX

ARRONAX: an Accelerator for Research in Radiochemistry and Oncology at Nantes Atlantique

Vaults connected to *hot cells* through a **pneumatic system**

Sterile rooms for radiopharmaceutical production

Surrounding labs for

radiochemistry , biochemistry,, nuclear metrology, quality control,...

Beam characteristics: High energy - High intensity

Beam	Accelerated particles	Energy range (MeV)	Intensity (μAe)	Dual beam
Proton	H-	30- 70	<375	Yes
	HH+	17.5	<50	No
Deuteron	D-	15-35	<50	Yes
Alpha	He++	68	<70	No

ARRONAX priority list

Targeted radionuclide therapy: $^{211}At(\alpha) - {}^{67}Cu(\beta) - {}^{47}Sc(\beta)$

PET imaging: ⁸²Sr/⁸²Rb and ⁶⁸Ge/⁶⁸Ga generators ⁶⁴Cu and ⁴⁴Sc: PET dosimetry before injection of ⁶⁷Cu and ⁴⁷Sc ⁴⁴Sc: β⁺ γ emitter (3 γ imaging)

Final Acceptance Tests are in progress Protons:

Beam transport validated at 375 µA- 70 MeV

Dual beam 2x200 µA -70 MeV extracted

1x500 µA - 30 MeV extracted

Still to be done:

Protons: Dual beam 2x375 μA -70MeV

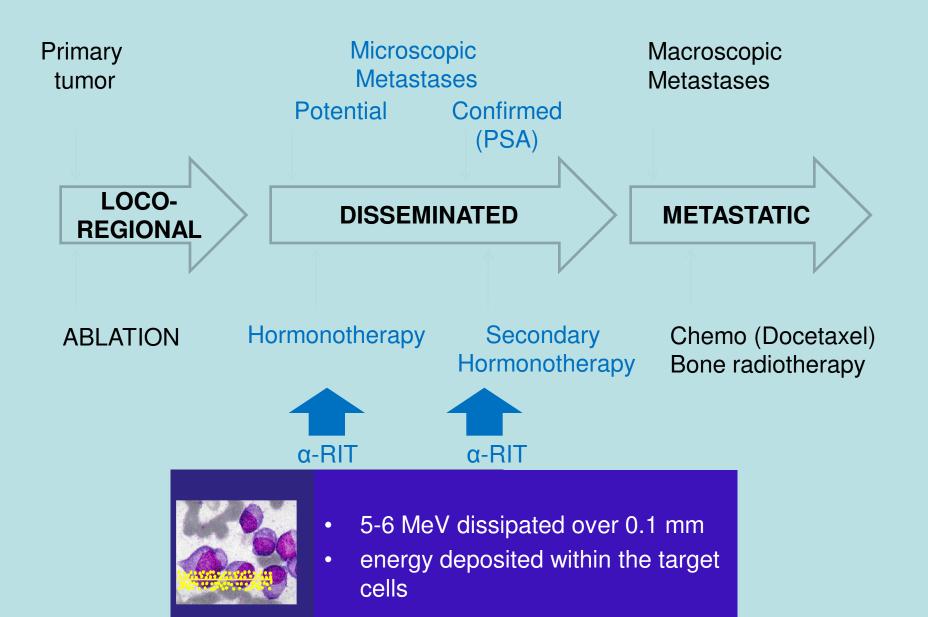
Alpha particles: 70 µAe – 68 MeV

Alpha particles: 25 µAe - 68 MeV extracted

First irradiation starting March 2010

Short-term ARRONAX capabilities

- ⁶⁴Cu: ⁶⁴Ni(p,n) Activity to perform a TEP exam: ~ 10 mCi 12-10 MeV- expected yield: $4,1 \text{ mCi/}\mu\text{A.h}$
- ²¹¹At: ²⁰⁹Bi(α ,2n) Maximum expected dose to patient: 10-20 mCi (?) 28.3 - 21 MeV- 4h - 70 μ Ae: ~ 150mCi (EOB)
- ⁸²Sr: ^{nat}Rb(p,4n) Activity to fill a Sr/Rb generator: ~ 120mCi 70 - 40 MeV - ~ 0.2 mCi/ μ A/h gradual increase up to 60 Ci/year (2012)
- ⁶⁸Ge: ^{nat}Ga(p,2n) Simultaneous production with Sr using dual target
 35-20 MeV ~ 0,05 mCi/µa/h
 gradual increase up to 15 Ci/year


Alpha-RIT

A consortium to work on:

- Radio Immuno-Therapy using ²¹¹At
- major indication: *prostate cancer*

Alpha-RIT in prostate cancer

Alpha-RIT: Why Astatine-211 ?

Few potential candidates

- ²¹¹At, ¹⁴⁹Tb, ²¹³Bi, ²²³Ra, ²²⁴Ra, ²²⁷Th, ²²⁵Ac
- Medical use
 - Half-life of 7.2 h vs. 46 min (Bi) or >10 days (Ra, Th)
 - No alpha-emitting decay products

Easier manufacturing

- Cyclotron (α–beam) rather than reactor
- Stable target (Bi) rather than radioactive target

Appropriate chemistry

Validated coupling method to antibodies

Alpha-RIT: The issues

- To combine the specificity of an **antibody** targeting prostate cancer cells with an alpha-emitter
- **To produce the alpha-emitter** in larger (industrial) amounts (planned design of dedicated cyclotron according to clinical feasibility)
- Chemistry, biology, toxicology and clinical tests (phase I and II)
- Alpha-emitters for medical use are innovative and **new rules** for handling these radionuclide have to be invented, approved and adopted

Conclusions

ARRONAX will be operating starting march 2010

- ARRONAX priority lists covers both **isotopes for therapy** (²¹¹At, ⁶⁷Cu, ⁴⁷Sc) and **imaging** (⁸²Sr, ⁶⁸Ge, ⁶⁴Cu, ⁴⁴Sc)
- Alpha-RIT, a consortium for the use of ²¹¹At in radioimmunotherapy, has been set and will start work in 2010
- In Nantes, a chain value going from nuclear physics to nuclear medicine will allow to go from radionuclide production to radiopharmaceuticals

Thank you for your attention

The **ARRONAX** project is supported by: the **Regional Council of Pays de la Loire** the **Université de Nantes** the **French government** (CNRS, INSERM) the **European Union**.