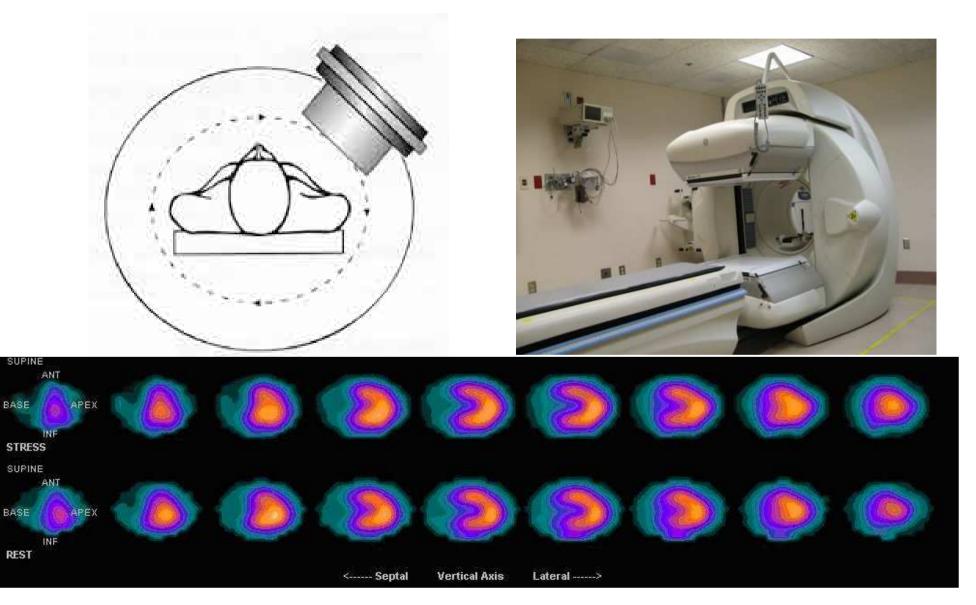
Summary: Radioisotopes in Diagnostics and Therapy

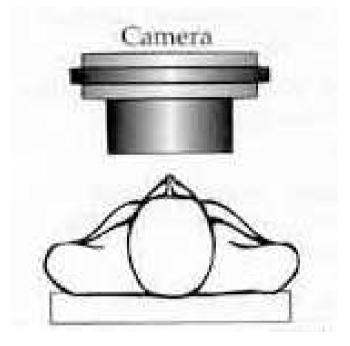
Ulli Köster Institut Laue Langevin, Grenoble, France

'Star' Radionuclides for SPECT and PET

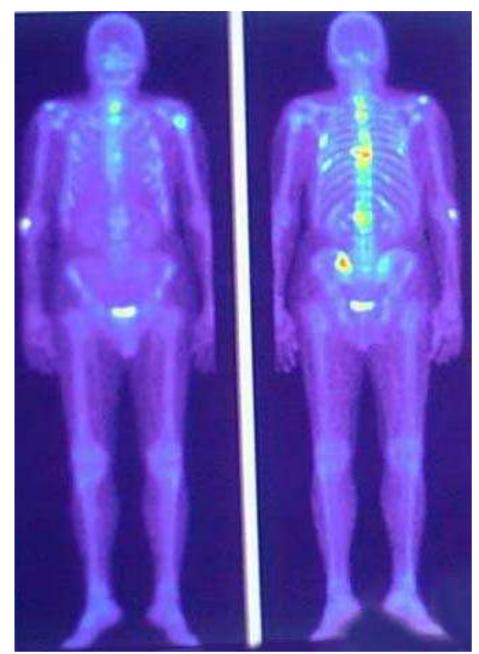
Centralized: 5(+x) reactors

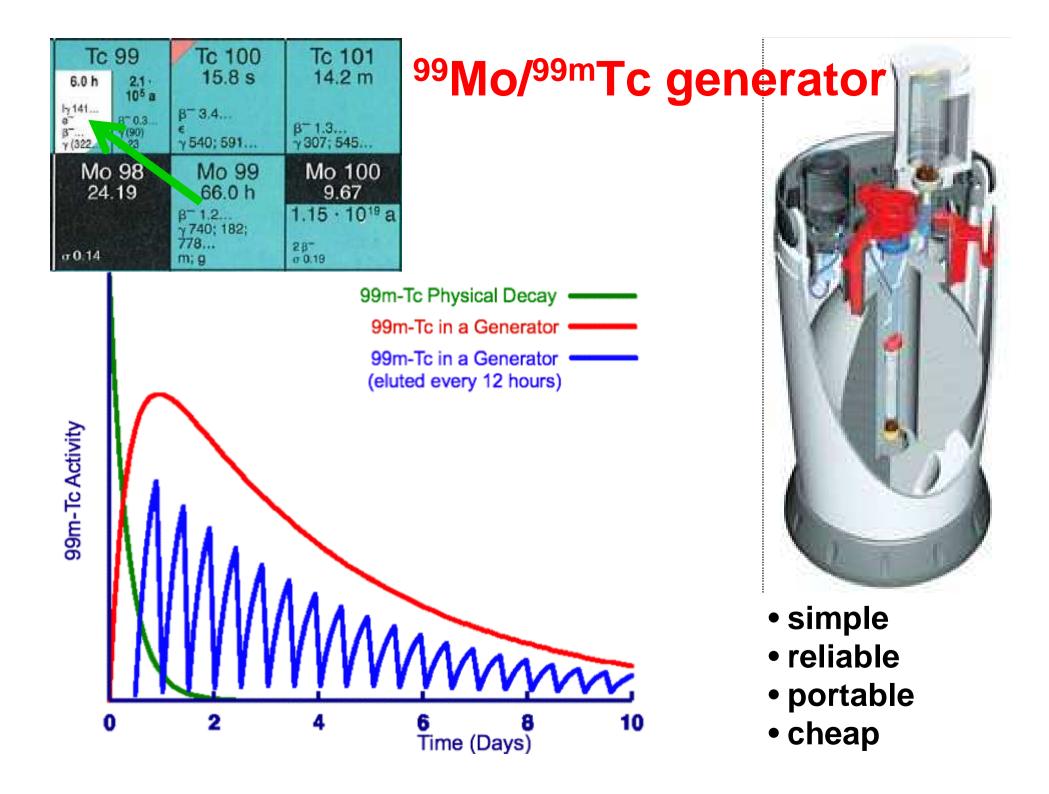

- ^{99m}**Tc** 6 h Eγ 140 keV
- from ⁹⁹Mo-^{99m}Tc generator;
 ^{99m}Tc supplies from operations in house/central radiopharmacy
- Ideal nuclear features for imaging (gamma camera, SPECT) and patient dose
- Versatile coordination chemistry
 of technetium
- Multi-disciplinary synergy → products for specific functional imaging
- Easy, abundant, economic availability (? since 2008)

Decentralized: 671 cyclotrons

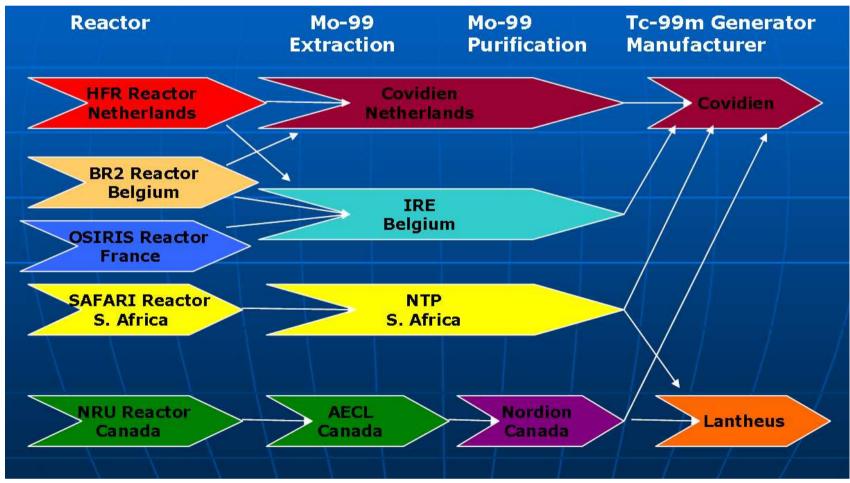

- ¹⁸**F** 110 min β⁺ (0.635 MeV)
- ¹⁸O(p,n) Ep 10-18MeV; 20-40uA
- Decentralised facilities for production and supplies
- Compatible to label organic and biological molecules or analogs
- Suitable for PET, PET-CT
- $T_{1/2}$ advantage over ¹¹C, ¹³N, ¹⁵O
- Success of ¹⁸FDG
- several pharmaceuticals containing fluorine
- Relatively more expensive

Ischemic heart disease


• diagnose by ECG and cardiac stress test with SPECT



Bone metastases from (prostate) cancer

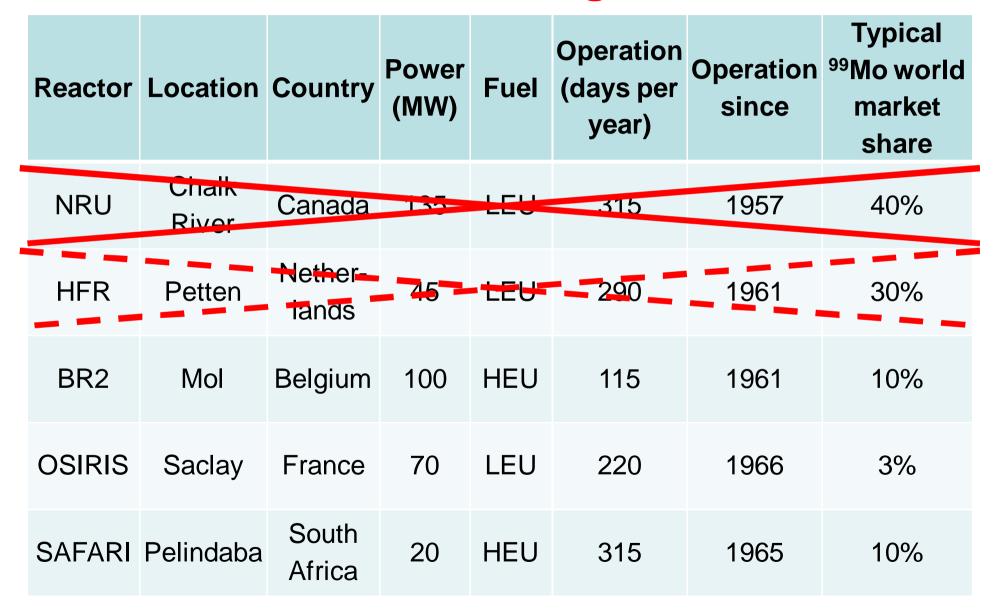

 planar or SPECT scan for bone metastases

World market for ⁹⁹Mo/^{99m}Tc

- ^{99m}Tc is the most important radionuclide in nuclear medicine (80% of all nuclear medicine applications)
- 28 million applications per year
- 80 000 Ci (3000 TBq) of ⁹⁹Mo needed per week

NRU Reactor, Canada

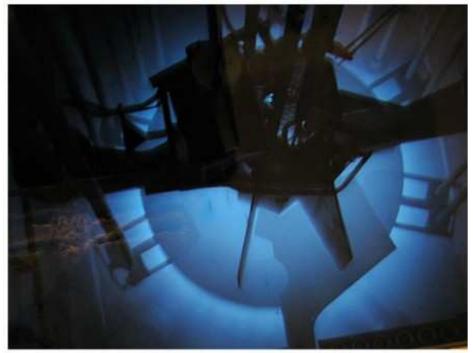
- 15 May 2009: D₂O leak
- stopped till spring 2010+
- license till October 2011


HFR Petten, NL

• extended maintenance stop from 19 February 2010

Reactors presently used for ⁹⁹Mo production with HEU targets

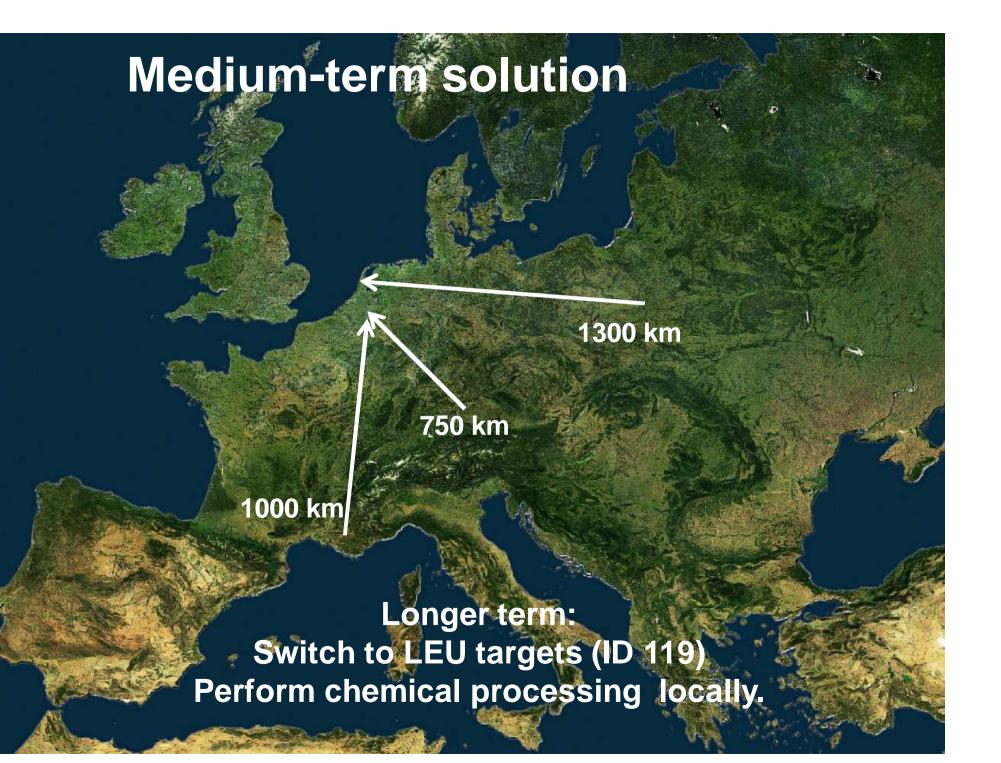
MAPLE reactors MMIR-1, MMIR-2


MAPLE 1 and 2 reactors, and New Processing Facility, at AECL Chalk River Laboratories (NRU and NRX reactors are behind, on the left and right, respectively).

Project officially stopped!

Correction should be possible. Costs? Delays?

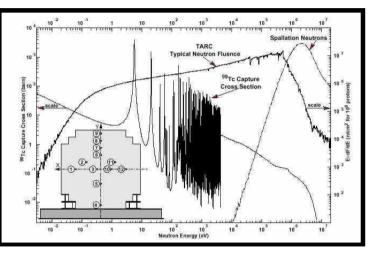
30 MW MAPLE-type reactor HANARO operates nicely in Korea


Power coefficient: Designed as: -0.12 mk/MW Found as: +0.28 mk/MW

Blue "Cerenkov radiation" from MAPLE 1 reactor core during commissioning tests at high power (8 MW). The Cerenkov glow is caused by high-speed electrons (beta particles or secondary electrons due to the core's operation) slowing down in the surrounding water.

Reactors foreseen for future ⁹⁹Mo production with HEU targets

Reactor	Location	Country	Power (MW)	Fuel	Operation (days per year)	Operation	Potential ⁹⁹ Mo world market share
MARIA	Warsaw	Poland	20-30	LEU	138	1974 Mo: 2010+	
FRM2	Garching	Bavaria	20	HEU	240	2004 Mo: 2014+	(13%)
RJH	Cadarache	France	100	LEU		2014+	(12-25%)
PALLAS	Petten?	Nether- lands	(45)	LEU	>300	2016+	
MAPLE	Chaik River	Canada		LEU	→ 365	?	(100%)



Alternative methods of producing ⁹⁹Mo

- **1.** Neutron irradiation (n, γ)
- 2. Liquid core reactor (n,f)
- 3. Cyclotron bombardment (p,2n)
- 4. Photo-nuclear reaction (γ,n)
- 5. Photo-fission reaction (γ ,f)
- 6. Spallation source (neutrons) ID94
- 7. Spallation source (resonance crossing) ID47
- 8. Neutron generator fission

Cost of new projects has to compete against depreciated subsidized reactors.

"Parasitic" operation interesting to generate backup capacity.

"Value" of ^{99m}Tc

Typical SPECT exam in Switzerland:

Medical service	167.42 CHF	114 €	18%
Technical service	729.73 CHF	495 €	78%
700 MBq ^{99m} Tc activity`	32.30 CHF	22 €	3%
Kit DPD	9.45 CHF	6€	1%
Total	938.90 CHF	637 €	100%

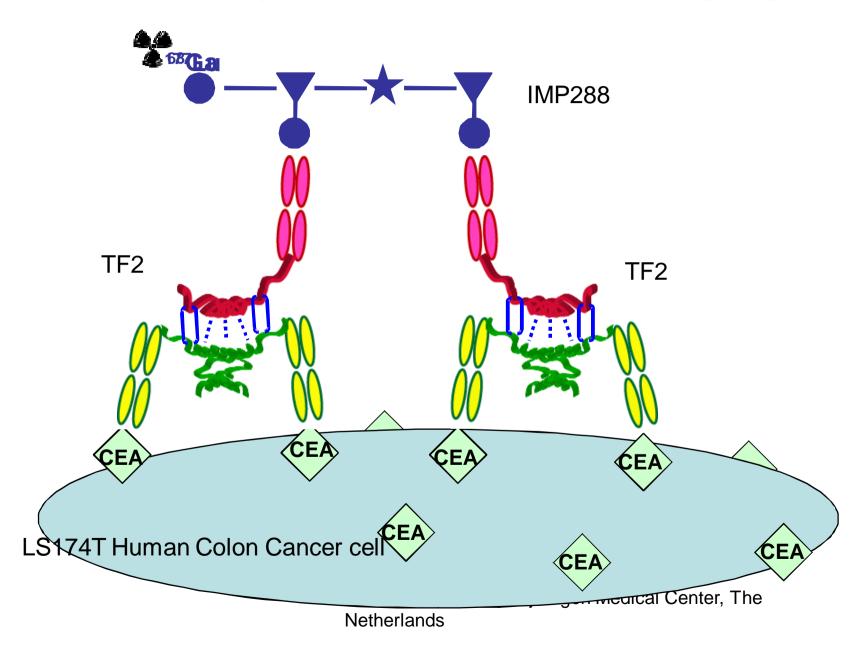
Compare: "AeroChamber"

50.10 CHF 34 €

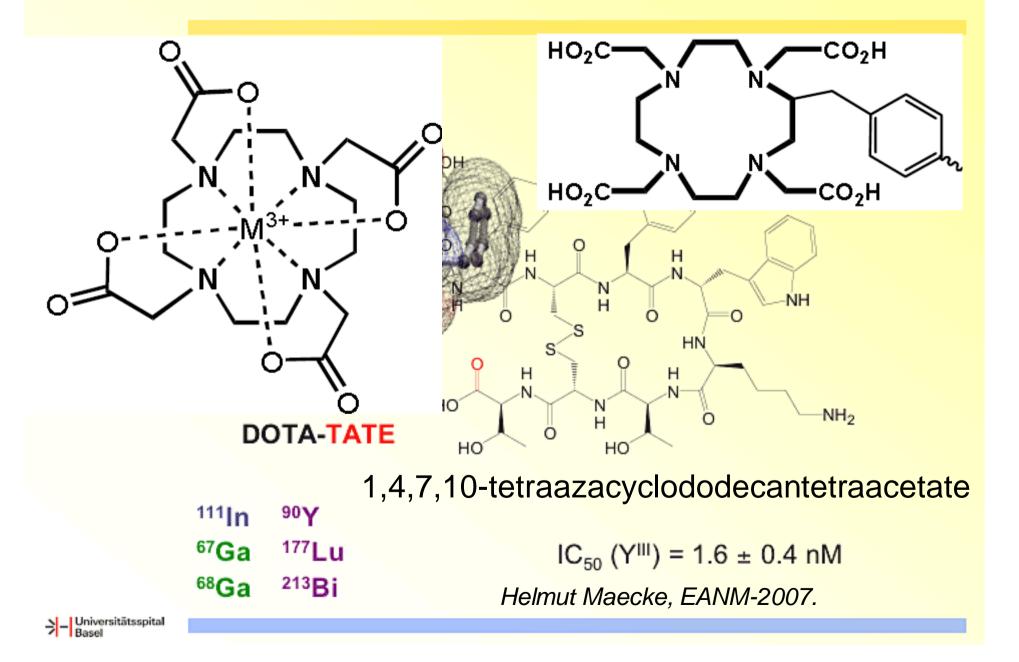
plastic tube with two rubber end caps

Milk, fossile fuel and 99m Tc are too cheap \Rightarrow not sustainable!

From diagnostics

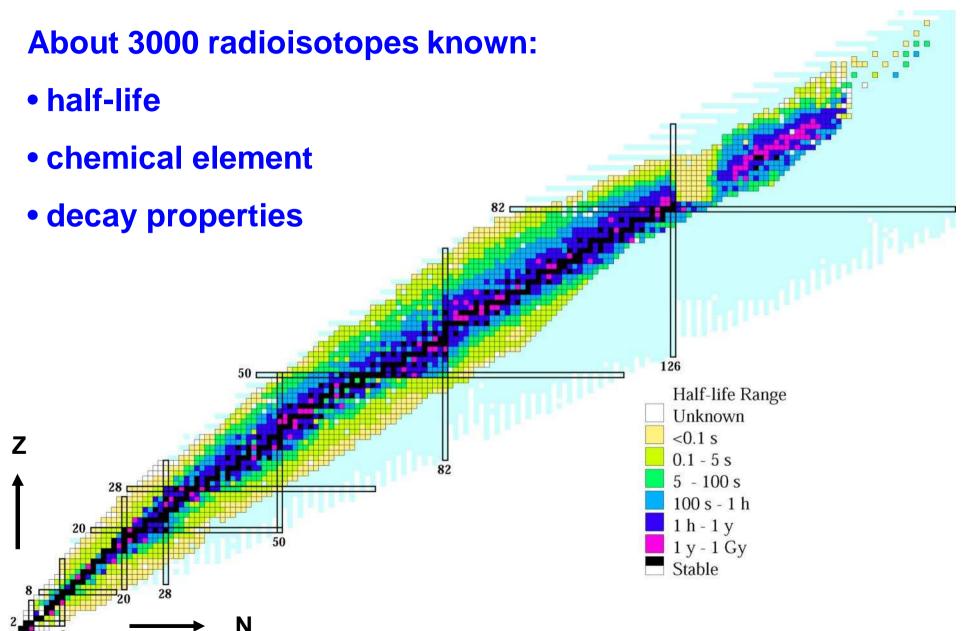


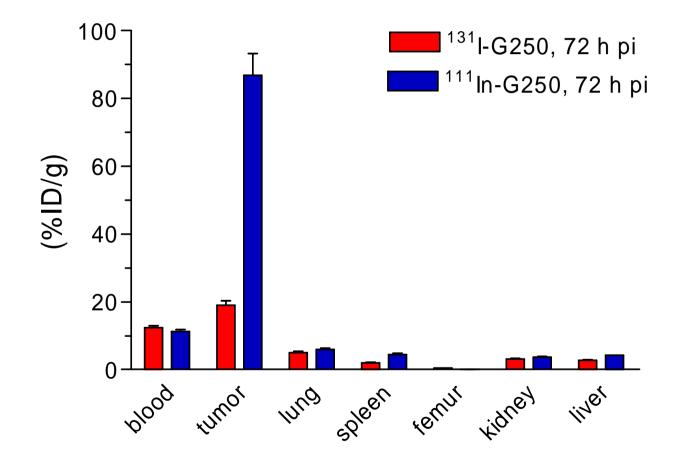
to therapy


Selectivity towards cancer cell

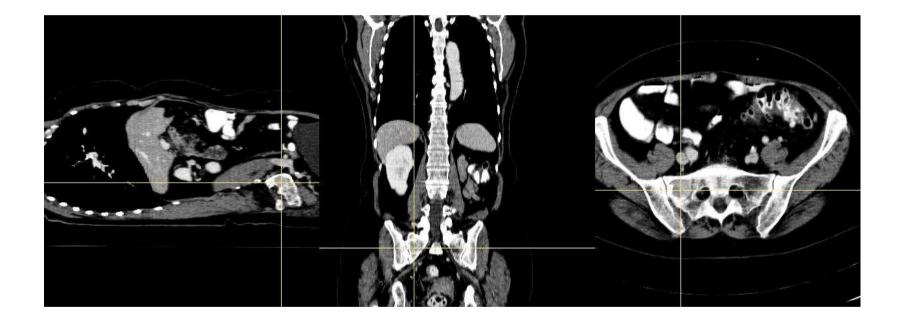
Biotracer	Example		Mass (u)
Element	<mark>ŀ (24 h), F⁻ (1 h), Sr²</mark> +, Ra²+		18 223
Small molecule	TcO ₄ ²⁻ (20 min), FDG (1 h), MIBG		100300
Peptides	DOTATOC, DOTATATE, (1-4 h)		1000-1500
mab	Ibritumomab, Tositumomab, Rituximab, Cetuximab, (days)		150000
	slowe	: r	heavier

Pretargeted immunoPET imaging

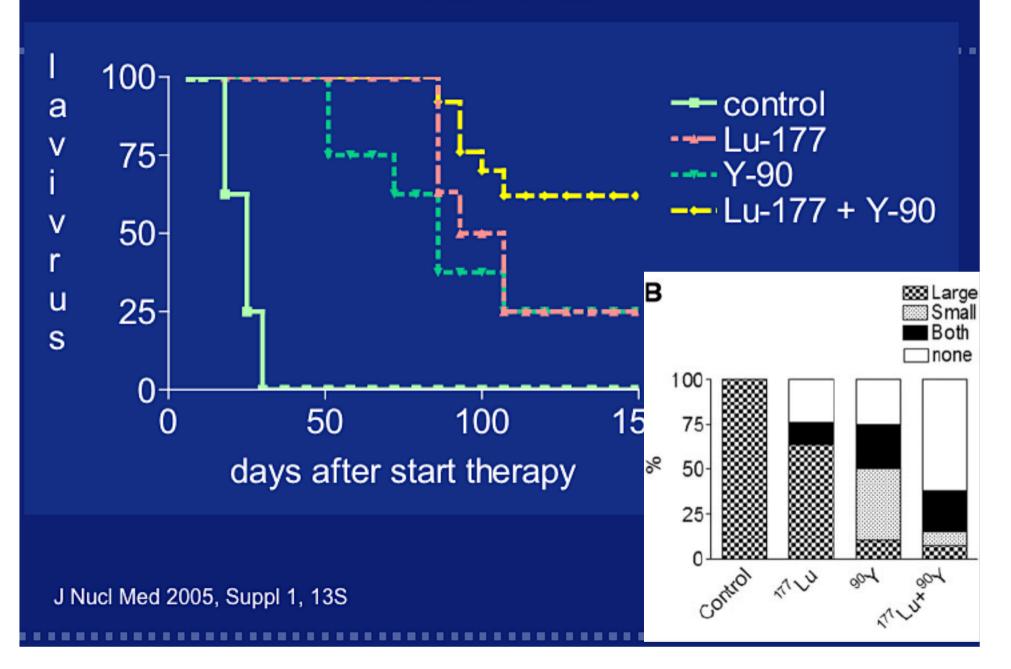

Structural Formula of DOTA-TOC/TATE


Interdisciplinary research Target ê jê Linker Receptor Radionuclide **Structural biology** Coordination **Nuclear physics** chemistry and radiochemistry photon diffraction neutron diffraction **User facilities: ESRF, ILL, EMBL**

The quest for the optimum isotope



The Quest for the optimal radionuclide for RIT


Radboud University Nijmegen Medical Center, The Netherlands

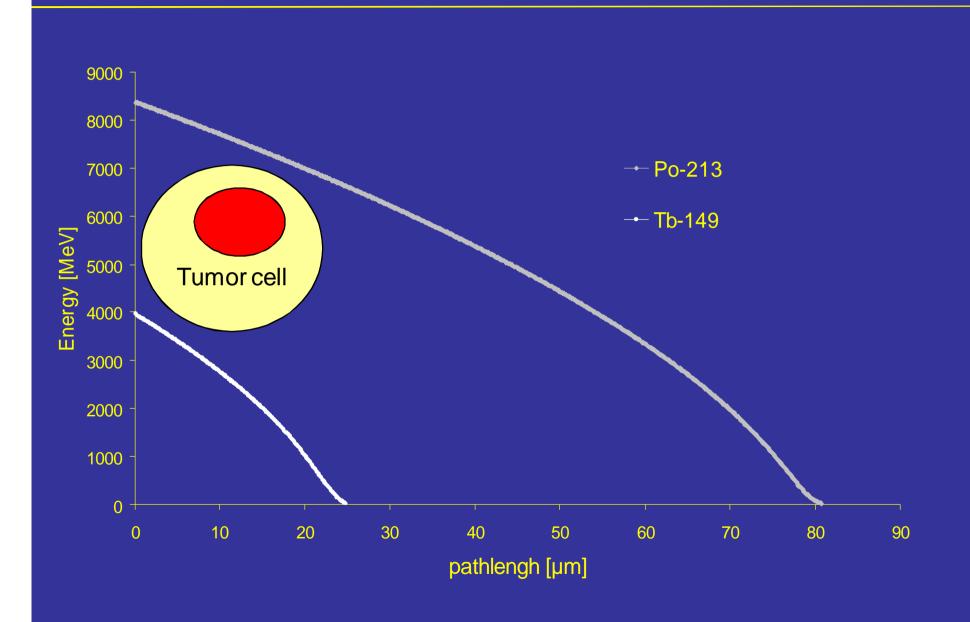
Radioimmunotherapy of RCC with ¹⁷⁷Lu-cG250

Radboud University Nijmegen Medical Center, The Netherlands

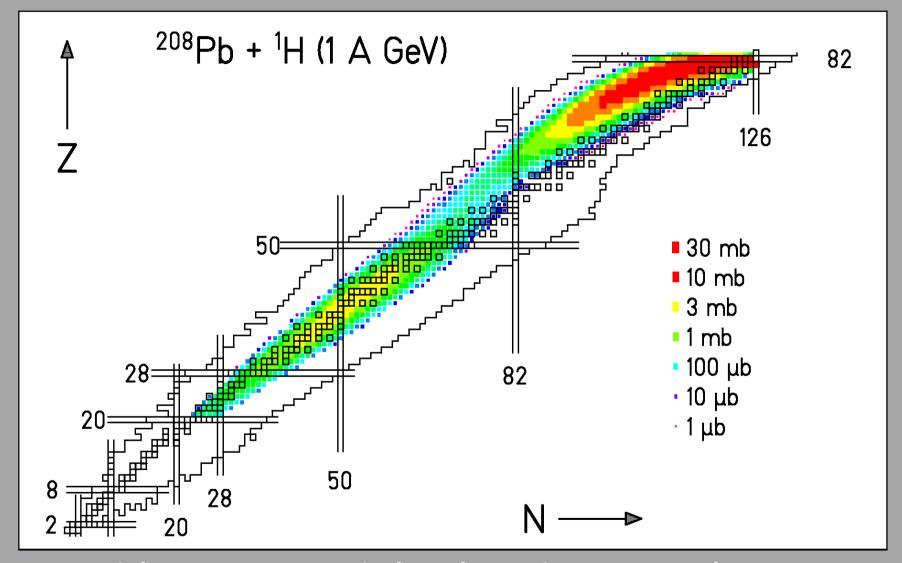
Survival

Radionuclides for radioimmunotherapy

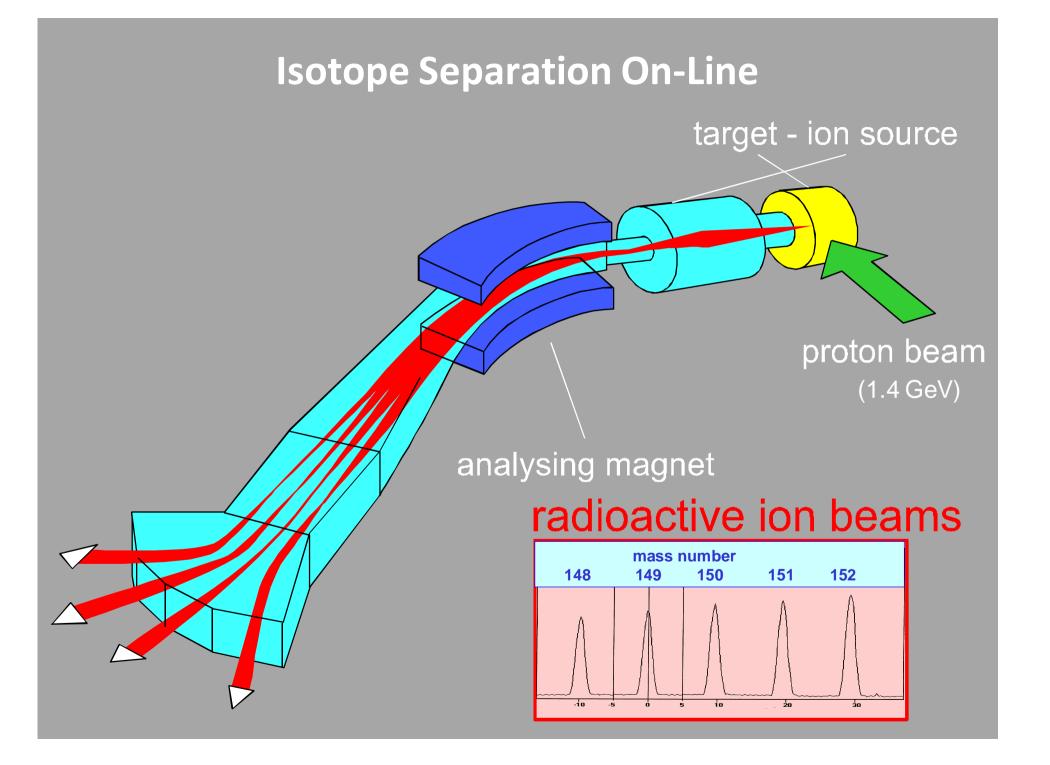
Radio- nuclide	Half- life	E mean (keV)	Eγ (keV)	Range		
Y-90	64 h	934 β	-	12 mm	cross-fire	9
Re-188	17 h	763 β	155	11 mm		
I-131	8 days	182 β	364	3 mm		
Lu-177	7 days	134 β	208, 113	2 mm		
Tb-161	7 days	154 β 5, 17, 40 e ⁻	75	2 mm 1-30 µm		
At-211	7.2 h	5870 α	-	45 µm	↓	
Tb-149	4.1 h	3967 α	165,	25 µm	localized	

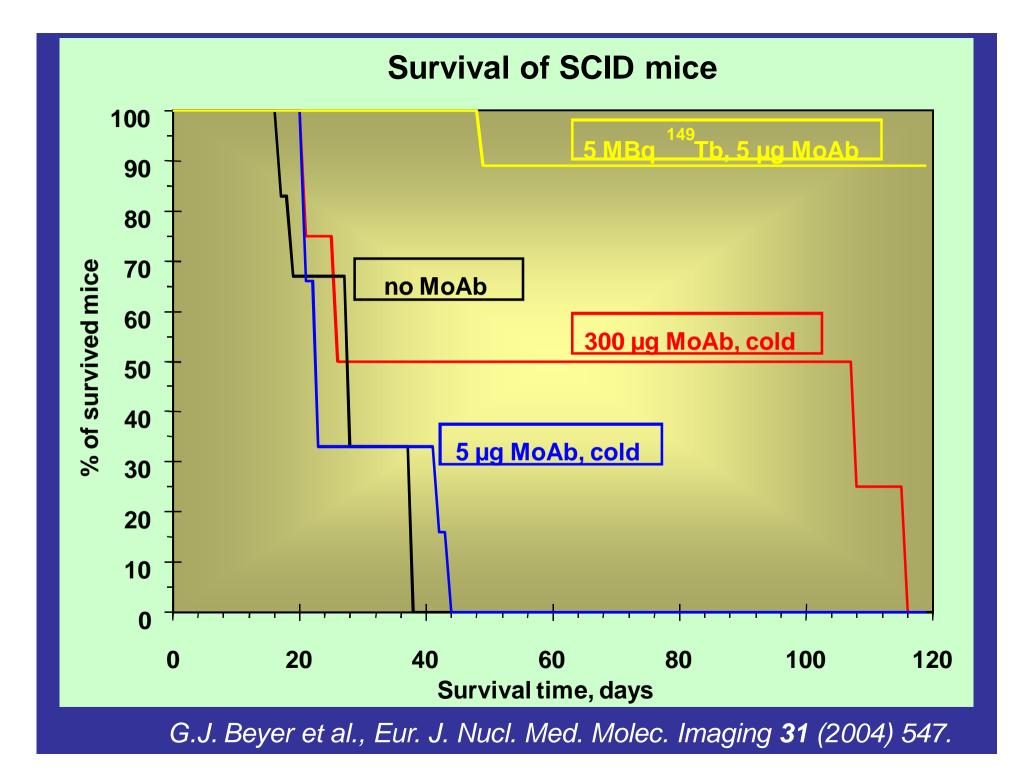

Isotopes for targeted alpha therapy

12 \$	Ac 213 0.80 s	Ac 214 8.2 ;	Ac 215 0.17 s	Ac 216 0.44 me	AC 217 0.76 pc 60 mi	Ac 218 1.1 μs	Ac 219 11.8 ps	Ac 220 26 ms	Ac 221 52 ms	Ac 222	Ac 223 2.10 m	Ac 224 2.9 h	AC 225 10.0 d	Ac 225 29 h
	n: 1,20	• 7215 7001. • • 140, 994	e 2900(7,211 e 7 (38%)	α 9.200; 9.105 γ82; 854; /*1	640 381 1 10.51	a 9.250 9	< 0/079	а / 885; 7.61; 7.68., 7 134.,	α 7. 45 : 7.44; 7.58	6.7% 4.8% 1.00 p. £90 h \ \ C	a 5,097; 5,062; \$,564; 4 7 (79 191; 85)	80,1421 80,000 6 1214	o. 5.890; 5.793; 5.732, 1 G 14 9 103; 1150; 189-01; 1 J	8" 0.9; 1 1 1 8 2 34 7 22,07, 1 18 255, 188
ĮI.	Ra 212 130 s	Ra 213	Ra 214 246 s	Fa 215 1.67 ms	Ra 216	Ra 217 16 µs	Ra 218 25.6 ps	Ra 219 10 ms	Ra 220 25 ms	Ra 221 28 s	Ra 222 38 s	Ra 223 11 43 d x87 H2 55007	Fa 224 3.66 d	Ra 225
.788. T	n 6.000	0001 073 811	n 7.137,6.905 6-9 7 (942)	u 8.700.7.979 y 634, 540	675 344 1 9555. 11.461	4 8.29	e 8.99 9	# 7.679, 7.969 7 310, 214, 992	u. 7.40 7.465	0.008 1 148, 83, 174 G 14	1 0.005, 0.227. 1 224, 6068, 473) 0 14	C 14, 154, 324 C 14, 150, 174, 274	5.4498 3.8498 3.241, 0.54 112.0	1103,94 140 17
ID m	Fr 211 3.10 m	F+2+2 20.0 m	Fr 210 34.6 s	Fr 214 335m: 52 ris	Fr 215 0.09 μs	F* 216 3.70 μs	Fr 217 16 µs	Гг 218 22 ms 10 ms	Fr 219 21 ms	Fr 220 27.4 s	Fr 221 4.9 m	Tr 222 14.2 m	Fr 223 21.8 m	Fr 224 3.3 m
2	- 8.434 - 849, 918; 201	5262 9.004; 435(4230) 127(1227(1988)	o 8778 s	List, List,	u 2.36	4 8.01 g	+ 9315	7.800 7.852 a 7.867; 15, 2 15	a 7.413 7 (252 517)	4 6.69; 6.63: 0.50 3 7 45:106:102.	4.6311,6126 7.210; (101; 411) C.14	0-1.0. 1000 011, 210, 7	07 1.1 0.0.34 9.60; 60; 238	0" 2.6; 2.0. y 215; 132; 827, 1341
00/ m	Rn 210 2.4 h	Rh 211 14.6 h	Rn 212 24 m	Fin 213 19.5 ms	Rn 214	Rn 215 23 μs	Rn 216 45 μs	Rr 217 6.54 ms	Rn 218 35 ms	Rn 219 3.96 s	Rn 220 55.6 s	Rn 221 25 m	Fn 222 3.825 d	Rn 223 23.2 m
A R S	5 6 CAL 	6.723 11.051 674 1983 675 0	o 8964	а В. 388; 7.352 у КАЦ	4 112 445; 7, 000 -1065 - 10.6 - 400	. 167 0	- 805 c	a 7740	n 7.133	- 6.616; 6.862; 6.425 y 971; 400	+ 6.228 - (550) - (012	5778 9138-330	~ 6,49340 ~(510 ~0.74	9- 7 500, 617; 1000, 600
08 h	At 209 5.4 h	AI 210 8.3 h	Al 211 7.22 h	At 212	At 213 0.11 µs	AI 214	At 215 0.1 ms	At 216 1 03 ms	At 217 32.3 ms	At 218 -2 s	A: 219 0.9 m	Al 220 3.71 m	At 221 2.3 m	At 222 54 s
¥1	n. 5.847 9.546; 788; 790, .	1.45504 5.4451 5.351 7 11811 2451 483	0 5867 (681)	10: 110 10: 10 10: 0 10: 0 10: 10 10: 10	a 9.98	- 8.260 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	e 8026	-1.00 -1.004 m	n 7.863 B 7 1259 334 6961	a 6.094: 6.052	4.6.2T	422.	07	u-
101	Po 208 2,838 a	Po 209 102 a	Po 210 138.38 d	PC 211	Po 212 6.14171 0 5394	Ρο 213 4.8 μα	Po 214 164 µs	Pc 215 1.78 ms	Po 216 0.15 a	Po 217 1.53 a	Po 218 3.05 m	Po 219 >300 na	Po 220 ⇒800 na	
	s 5.11.52 9 (252;571) 0	4.881 (895; 281; 767)	n 5.30-SSE 9 (803); a <0.0006 + <0.030; 04,4 0.200; a y <0.5	1270. 9 000 9 000 1004 1004 1004	1.00 1-128 - 368 28 583 223 - 10.02 16.00	a 8.376	≈7.5389	a 7.3862 8 ⁻ 7 (498)	n 6.7733 7 (893)	a 6.545 3 ⁻	a €.0024 ₽~	877 NV	07.5	
06 d	El 207 31.55 a	El 208 3.68 - 10 ¹ a	B1209 100	BI 21D	Bi 211 2.17 m	Bi 212	B 213 /5.69 m	BI 214 16.9 m	BI 215	El 216	В 217 98.6 в	BI 218 33 ε		
, 3 (0,	1770	ans.	n 0011 n 0.626 Maria 498-7	4 8 99 y 156 224 = 10000 = 100000 = 10000000 = 1000000 = 100000 = 100000 = 1000000 = 100000000 = 1000000 = 100000000000 = 100000000000000 = 1000000000000000000000000000000000000	0 0.8229(0.278 P` 7 109 1 → g1P~→ g		C 56 ⁴ 7 440, (193) 1100	0 15150 0.5450,5513 1005, 704,1120 0+0076	1,000 200-300 1,000 1,000 200-000 200-000 200-000 200-000 200-000 200-000 200-000 200-000 200-000 200-00000 200-000 200-00000000	F. 500, 100, 200, 200, 200, 200, 200, 200, 2	1230, 204, 094: 400	0 3.8, 3.7 7010, 368, 486; 600	136	
05 7 a	P5 203 24.1	РЬ 207 22.1	P5 200 524	Fb 209 3.253 h	РБ 210 22.3 а	Pb 211 36.1 m	Pb 212 10.64 h	Pb 210 10.2 m	Pb 214 26.8 m		(and and a little start)			
	+ 11 (23)	ere	n 0.00023 on, a c8-A	p= 6.6	p= (102; 6.66 + 17; 0=19 + 0.70 + 10,5	2-14. ,405,832; 137.	F= 3.8; 3.6. 1880, 890		μ° 07 10. γ 052:005: β(2		134			
)4 ±	TI 205 70.45	TI 206 3.7 n 428 n	TI 2C7 1.31 s 477m	TI 208 3.053 TI	TI 209 2.16 m	TI 210 1.30 m	T 211 >203 ns	TI 212 >370 na						
	a.0.11	1000, 602, 906, 911, 109, 930, 109, 930,	1, 4000 (²⁷³ 4) 20 (1000 (1000 (1000	RT 1 R 5 4 V2013: 1805 5 1 / RV1 271	月11日 2月15 2月15 2月15 2月15 2月15 2月15 2月15 2月15	a=t ≥ 2 a y800-258 in	(*1	(C.1.	132					


¹⁴⁹Tb for targeted alpha therapy

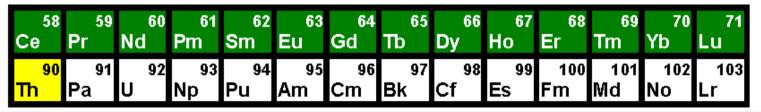
Er 148 4.8 s	Er 149	Er 150 18.5 s	Er 151	Er 152 10.3 s	Er 153 37,1 s	Er 154 3.73 m	Er 155 5.3 m	Er 158 18.8 m	Er 157 18.66 m	Er 158 2.25 h	Er 159 38 m	Er 160 38.6 h	Er 161 3.24 h	Er 162 0.139	Er 169 75 m	Er 164 1.601
Station in	TTAL STREET	THE DR.	1000. 1010. 100.	1	0.4.075 1.100 (1.300) 1.000 (1.200) 1.000 (1.200)	4.17 17(10)	4) A 40-000 9 1990 - 2000 2004	in .	100 MIL 2100 MIL 100 MIL	170.007-	VERTING.	27(0"	VERT.	in	11114.1	111 1011 - 0.0012
Ho 147 5.8 s	Ho 148	Ho 149	Ho 150	Ho 151 621 368	Ho 152	Ho 153	Ho 154	Hb 155 48 m	Ho 156	Ho 157 12.6 m	Ho 158	Hp 159	Hip 160	Ho 161	Ho 152	Ho 163
487; 0064; 487; 0064;								1. 1.M.	Frank	101 1 21 1 1. 1 588 - 341 1 101 107		1975 - 1975 1980 - 1980	San Car	her in	And and a second	1.000
Dy 146 29 s	Dy 147	Dy 148 3.1.m	Dy 149	Dy 150	Dy 151 17 m	Dy 152 2.4 h	Dy 153 6:29 h	Dy 154 3.0 - 10* a	Dy 155 10.0 h	Dy 168 0.068	Dy 157 8.1.h	Dy 158 0.095	Dy 150 144.4 II	Dy 160 2:029	Dy 161 18.899	Dy 162 25,475
1000-2549: 385-2167	The second	adan dar	100 200-1 100-1	4 10 30	7 386 - 44 542; 578 2.19	AND AND	- 1.41 		10.038.9.9. 1707	#33 101 -(3.000	1000	#33 Victor 60.000	110. P 110. P 11000	1100 10, 11 <1 0001	×800 ₩.c.<10-0	e-170
Tb 145	Tb 146	TD 547	Tb 148	TD 149	Th 150	Tb 151	Tb 152	Tb 153 2.34.0	To 154	Tb 155 5.32 0	Tb 156	Tb 157 str a	Tb 158	TID 159 100	Tib 160 723 d	Tb 161 0.90 d
							ALC: NO	THE THE		WHT: TIME VALL BAR	19 (k) (h)	j prot	50m 🔣	wara .	10-10-17 10-17-288 10-17-288 10-17-17-17-17-17-17-17-17-17-17-17-17-17-	#10.5.04. 1295-90170
Gd 144 4.5 m	Gd 145	Gd 145 48.3 d	Gd 147 38.1 h	74.6 a	Bd 149 9,28 d	Gdl 150 1.8 - 10 ⁴ a	Gd 151 190 d	Gd 152 0.20	Gdi 153 239.47 d	Gd 154 2.18	Gd 155 14.80	Gd 156 20,47	Gd 157 15 65	Gd 158 24.84	Gd 150 18.48 h	Gd 160 21,86
92 53 1310-2943 50:397		HE HE	111" 1259:338 909-	a 3 903 a 14080	4.43099 5182300 947	+ 8.79	414 2000 1 126 (943): 170	- 0.55 - 705 7	507, 100, 70 (18806 6, 0.00	100	HEIDER HEIDER		1251005	421 marca	(* 1.8. 7389 50.	-12
Eu 143 2.8 m	EU 144 10.2 s	Eu 145 5.93 d	EU 146 4.53 d	Eu 147 34.5.0	EU 148 85.6 d	Eu 149 9311 0	EU 150	Eu 151 47,81	Eu 152	EL 153 52.19	EU 154	Eu 155 4.761 a	Eu 156 15.2.4	Eu 157 15:18 h	Eu 158 48 m	Eu 159 1 81 m
1013:108 1013:108	07.8.2. 	y 694; 1690) 784	1011年1日	v 5.41 v 197: 321 878	1151.000.	Ameret.		o (+ 3150 + 6000		n 300 1950 - 1848		97-9-17(0.05 9-07-535 + 00846	日本 0 m 5 6 1日3-32 (234	6014.400 604(-400) 5070-010	1445-000, 40 1445-000, 40 144	11-14-71-78 -746-71-78 -16:32
Srn 142 72.4 m	Sm 143	Sm 144 3.07	Sm 145 340 d	Sm 146 1.03 - 10 ⁸ a	Sm 147 14.99 1.06 - 10 ¹¹ a	Sm 148 11.24 7-10 ¹⁰ a	Sm 149 13.82	Sm 150 7.38	Sm 151 93 a	Sm 152 26.75	Sm 153 48.27 h	Sm 154 22,75	Sm 155 22.4 m	Sm 156 9.4 h	Sm 157 8.11 m	Sm 158 5:51 m
17 1.0 ave	1000.1 (1000.1	. iá	6 330 6 6 7 6 1 6 1 6 1 6 1 7 1 1 1 1 1 1 1 1	1145	4 2 2 25 (7 51 6 \ 0 0.0000	+195 +3.4	u 42100 na a 8000	a the	HELLING	1200	10170. 110170. 1400	ins	THE DAR	10.7 	讀神	1, 199 (1991) 1995
Pm 141 20.9 m	Pm 142 40.5 s	Pm 143	Pm 144	Pm 145 17.7 s	Pm 146 0.53 a	Pm 147 2.412 a	Pm 148	Pm 149 55.1 h	Pm 160 2.7 h	Pm 151 28.4 h	Pm 152	Pm 153 5.3 m	Pm 154	Pm 165 41.5 s	Pm 156 26.7.8	Pm 167 10.68
6 0.000, 1000, (54, 1348) (24, 1348)	(****	145	4130 B* E18: 807 477-		194 194 194 194 194 194 194 194 194 194	102 (U).1 (4)	rine are state	177 1.1 2 594 2 1400	1773 (1784) 1884 (1888) 1988	新生命的 (12)。 [16][16][16] [16][16]		10-17 14, 107, 18 100	111 1200. 144 100	177 1.1 1759, 951 111, 762	104-144 107	1016-1000 2000-0071
Nd 140 0.37 d	NG 141	Nd 142 27.2	Nd 143 122	Nd 144 23.0 2.29 - 10 ⁻⁰ m	Nd 145 8.3	Nd 146 17.2	Nd 147 10.98 d	Nd 148.	Nd 149 1.73 h	Nd 150 5.6	Nd 151 12.4 m	Nd 152 11.4 m	Nd 153 28.9	Nd 154 25.9 s	Nd 155 8.9.s	Nd 156 5.5 s
e ro 1	tine time	4 10	1930 14 - 1 - 1 - 1 - 1	= 1. <u>83</u> = 3.6	117. 0.00000 -	44	AND AND	112.A.	177344930 17931: 184, 200.	26- n 1.0	97 1.01.03 v107,288 fm11,	174 22 175 22	1414.100	17-2-8, 27 - 152, 656 - 181, 846 - 181, - 18	1-0.0-40 1-04(-435) 459:-07	2100.102
Pr 139 4.5 h	Pr 140 34 m	Pr 141 100	Pr 142	Pr 143 33.57 d	Pr 144	Pr 145 5.58 h	Pr 146 24.0.m	Pr 147 13.6 m	Pt 148	Pr 149 2.25 m	Py 150 -4+ 1 \$1+	Pr 151 18.9 s	Pr 152 38 s	Pr 153 4.3 s	Pr 154 2.3 s	Pr 155 >300 ns
ACIMACION	Para	++++2	2 ¹⁸ 2	2 (Ca)	「「「「」	ATTA CONTRACT	C.A. innie.	ISTE ANT	Line and	1153; 108	题证	1-0.4 1485-000 1483-7000	F 了語:288	Con-man	1100(\$60.71) 1000(\$60.71)	r.
Co 138 0.251	Co 139	Ge 140 88.450	Go 141 32.60 d	Ce 142	Ciii 143 33.0 h	Ce 144 284.8 d	Ce 145 2.98 m	Ce 146 13.5 m	Ce 147 57 s	Ce 148 481	Ce 149 S a	Ce 150 4.1 s	Ce 151 1.0 s	Ce 152	Ce 153 >300 ns	Ce 154 >300 m
w0.025 + 1.0		+150	8*0.4, 0.6 9145 225	+0.07	(1005) 新士。 新教(1782) (111)		1701 BL 100	17.945. 1947. (1)	17-31-30 19865; 402:080; 1014	1001-844	()" (56.000,88	28,22 VIII0: 285	¢.	THE H	872	123


Alpha track in relation to cancer cells



High-energy proton induced reactions

High-energy proton induced reactions can produce most of the isotopes of the chart of nuclides.


Terbium: a unique element

ID101	ID92		ID97
¹⁴⁹ Tb	¹⁵² Tb	¹⁵⁵ Tb	¹⁶¹ Tb
α-RIT	PET	SPECT	β/e⁻ RIT
			SPECT

Radioisotopes available at ISOLDE-CERN

1 H	1		Isoto	opes o						2 He							
3 Li	4 Be		Long	g-livec	l isoto	ipes a	vailab	5 B	6 C	7 N	8 O	9 F	10 Ne				
11 Na	12 Mg		Deca	ay dau	<mark>ighter</mark>	s of IS		<mark>E bear</mark>	ns			13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc		23 V	24 Cr	25 Mn	<mark>26</mark> Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	57 La	72 Hf		74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt		111 Rg	112	113	114	115	116		118

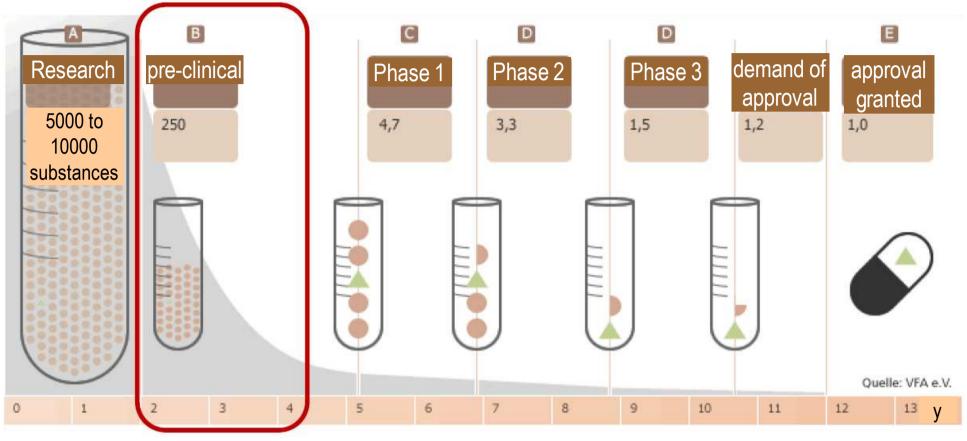
Currently available: more than 1000 different radioisotopes Saturation activities of longer-lived radioisotopes: GBq and more Unique radiochemical techniques (e.g. *P. Hoff et al., NIM 221 (1984) 313.*)

Isotopes for targeted alpha therapy

12 \$	Ac 213 0.80 s	Ac 214 8.2 ;	Ac 215 0.17 s	Ac 216 0.44 me	AC 217	Ac 218 1.1 µs	Ac 219 11.8 ps	Ac 220 26 ms	Ac 221 52 ms	AC 222	Ac 223 2.10 m	Ac 224 2.9 h	AC 225 10.0 d	Ac 225 29 h
	n 120	. 7215 7081 1 187, 914	e 7900(7,21) e 1 (299)	n 9.59(9.105 Y80(804; 7/1	1,450 281 381 1 0.01(0.00	a 9.25e 9	c 5.975	a /85; /.61; 7,68., 7,134.,,	α 7. 45 .7.44; 7,35	- 040 6 73(: 8 86: 1 00 PM E.953 1 3.4 5	e t.047; t.062; 6,064; e 7 (99 191; 84)	85145 8000 6214	a.5.830; 5.793; 5.732; 5.74 9.103; (150; 155; 64;) 9	0" 0.9;11 4 (a. 2.34 7 ZNO, 110 204, 100
11	Ra 212 130 s	Ra 213	Ra 214 248 s	Fa 215 1.67 ms	Ba 216	Ra 217 16 µs	Ra 218 25.6 ps	Ra 219 10 ms	Fla 220 25 ms	Ra 221 28 s	Ra 222 38 s	Ra 223 11 43 d	Fa 224 3 66 d	Ra 225 14.8 d
.788). 	n 0.000	052 51	n 7.137,6.905 6-9 7 (942)	u 8.700.7.979 y 634, 540	976 344. 9 9585. 11 463	4 8.29	e 809	a 7.679,7.969 7310,214, 992	u. 7,40 7 465	4 6.612; 6.761; 6.608 1 148, 93, 174 C 14	a 6.658; 6.237. 7 524, 6069, 473) C 14	α 8.7142; 6.5067. 7.897 - 54, 524 C - 1, 180. - 10.7	0.5.6854; 5.4458 7.541, 0.14 11.12.0	11703,04 140 47
ID m	Fr 211 3.10 m	F+2+2 20.0 m	Fr 210 34.6 s	Fr 214 335m: 52ms	Fr 215 0.09 μs	F+ 210 0.70 μs	Fr 217 16 µs	Fr 218 22 ms 10 ms	Fr 219 21 ms	Fr 220 27.4 s	Fr 221 4.9	Tr 222 14.2 m	Fr 223 21.8 m	Fr 224 3.3 m
2	- 6.496 - 6.490 9181 2011	5252 9.094; 146(1230) 127(1227)1188	o 8716 s	1147, 1148,	a 9.36	4 8.01 3	+ 9315	07/251- 7502 - 7807; 7552 - 7867; 15:0 - 787; 15:0 - 787	a 2.413 7 (252 517)	4 6.69; 6.63 0.50 3 7 45: 106: 162.	4.5 4.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	0-1.0. (D)0 Cit; 242.	p* 1.1 o 5.34 y 50; 60; 235	0" 2.6; 2.0. 7 215; 132; 827; 1341
69./ m	Rn 210 2.4 h	Rh 211 14.6 h	Rn 212 24 m	Fr 213 19.5 ms	Rn 214	Rn 215 23 μs	Rn 216 45 μs	Rn 217 0.54 ms	Rn 218 35 ms	Rn 2 3.90	Rn 220 55.6 s	Rn 221 25 m	En 222 3.825 d	Rn 223 23.2 m
1	5 6 CAL 	6.782 15851 674 1982 875 0	o 8:264	n 8.388; 7.352 y Kalt	4 112 445; 00 1065 - 10 46 - 4000	. 167 0	- 805 c	a 7740	n 7.193	- 6.610; 6.863; 195 1971; 109	+ 6.528 	5778 • 140	~ 6.49340 ~ (510) ~ 0.74	рт у 100, 617; Лоп, АОЛ
18 h	At 209 5.4 h	AI 210 8.3 h	Al 211 7.22.h	At 212	At 213 0.11 µs	AI 214	At 215 0.1 ms	At 216	At 217 32.3 /s	At 218 -2 s	A: 219 0.9 m	Al 220 3.7° m	At 221 2.3 m	At 222 54 s
	n 5.847 n 546; YBE: 780	1.4151245. 7.1181:245.	0 0867) (687)	1.15+ 1.15E 7.52, 7.52, 9.13, 9.60, 8' 8'	a: 9.48	-8.300 -0 -0077 - 10 -0 - 1	e 8026	1.7.000 (1.2004) (1.7.000 (1.2004) (1.7.000 (1.2004) (1.2	n 7 59 334 661	9.6.094: 6.052 1	1 ⁶²⁷	48483 7341 238	07	u
07 5960	P5 208 2838 a	Po 209 102 a	Po 210 138.38 d	FC 211 84.5 0.005	Po 212 6.14171 mitdaya	Po 213 4.2 με	Po 214 164 µs	Pc 2 1.78	Po 216 0.15 a	Po 217 1.53 a	Po 218 3.05 m	Po 219 >300 na	Po 220 >800 na	
	u 5.1152 9 (262;571) 0	4.881 (855; 281; 763)	n 5.30-SE 3 (808) a <0.0006 + <0.080; n _{k,0} 0.300; ay <00	4.000 + 1.000 1004 - 7.000 11	1.00. 1.128 - 348 28 543 223 - 10.02 + 6.765	a 8.376 y (779)	≈ 7.5889 7 (800; 299)	9/18862 7 (458)	n 8.7733 7 (845)	a 6.545 3	α.€.0024 ₽ [™]	arr NV	07.5	
05 d	El 207 31.55 a	3.68 - 10 ³ a	B1209 100	BI 21D	Bi 211 2.17 m	BI 212	B 217 /5.51 m	BI 214 19.9 m	BI 215	El 216	B 2 7 98.5 s	BI 218 33 ε	1112022-04-17	
	1 570, 1004	801\$	1:0011-: 0.020 14 495.7	-104 (**** +104 -404 +356 4/86 204 -100 -1004 801	P - gip a	F F	C. (195)	0 15(5) 0.5-50 5513. 1005 704,1120. 0+0070		Story States	1 230, 204, 694, 400	0 3.8; 3.7 1010, 360, 460; 600	136	
05 7 a	Po 203 24.1	Pb 207 22.1	P5 200 524	Fb 209 3.255	Pb 210 22.3 a		Pb 212 10.64 h	Pb.210 10.2 m	Pb 214 26.8 m		1000000000			
	+ 11 (23)	eres .	17 0 0 0023		p=0.02; 6.00 + 17; e=19 + 0.70 + - (C.5	1-14 1405-8321 137	1080.000 E	-	μ° 07 10. γ 852: 305: 3/3		134			
94 #	TI 205 70.45	T 204	TIEC7	11 208 3.653 T	TI 209 2.16 m	TI 210 1.30 m	T 211 >207 ns	TI 212 >370 na	(925010					
	at 0 11	108; 63, 56, 211 26, 211 29, 211 20, 211	11,4000; (1 ⁴ 4.4 301 (1400) (RT 1 R 5 d y2012 1800 511 AVX 971	A ²¹ 18 21567 4田 117	4**t 3-94 y800 298. in	p::)	(F ⁻¹)	132					

Thomson Reuters Algeta soars on \$800 million Bayer drug alliance

09.03.09, 09:13 AM EDT


FRANKFURT, Sept 3 (Reuters) -

Norwegian biotech company Algeta clinched an \$800 million licensing deal for its main experimental drug with German drugmaker <u>Bayer</u>, sending its shares soaring on Thursday.

Algeta expects **peak annual global sales of \$1.3-\$1.9 billion** for the cancer drug, dubbed **Alpharadin**, which clings to **cancerous bone cells** because it has some properties of calcium and **destroys them via alpha rays**. The deal is potentially worth 560 million euros (\$800 million) to Algeta, including an upfront payment of 42.5 million from Bayer and payments depending on development and commercial milestones, the two companies said.

Algeta, founded in 1997 by two **Norwegian radiochemistry researchers**, will also get double-digit royalties on future sales. It also has an option in the U.S. market, by far the largest for Alpharadin, to switch from royalties to sharing profit equally with Bayer.

Development of pharmaceuticals

Screening

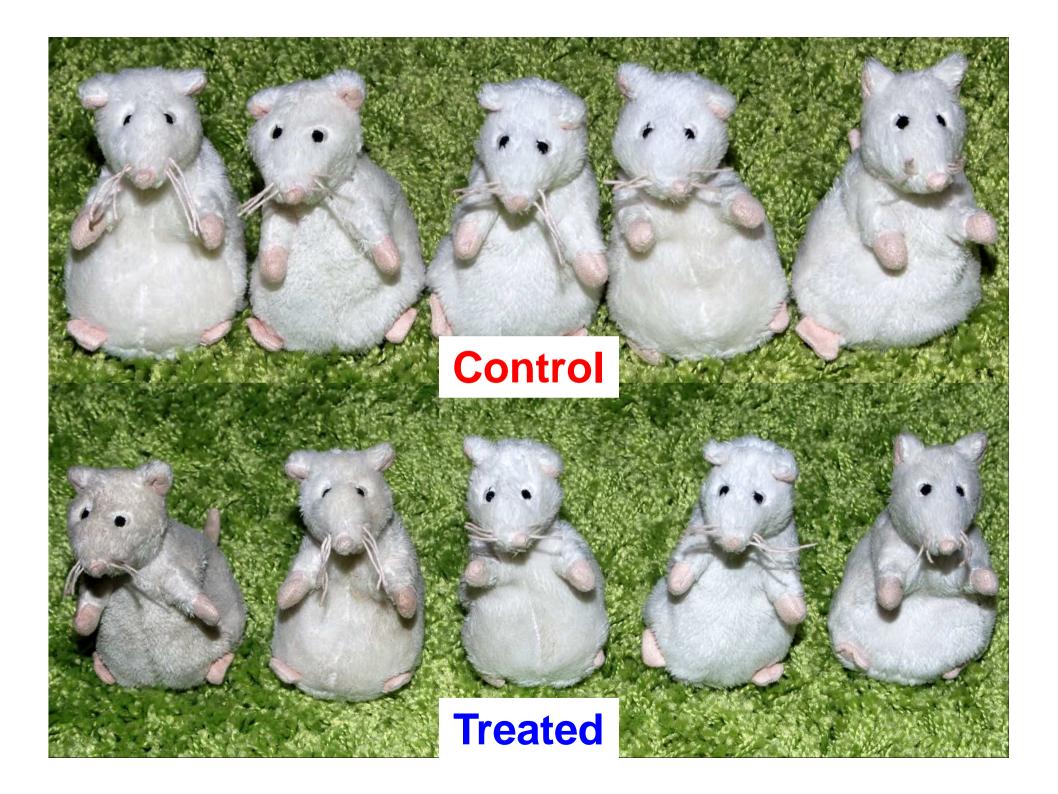
in vitro tests animal exp.

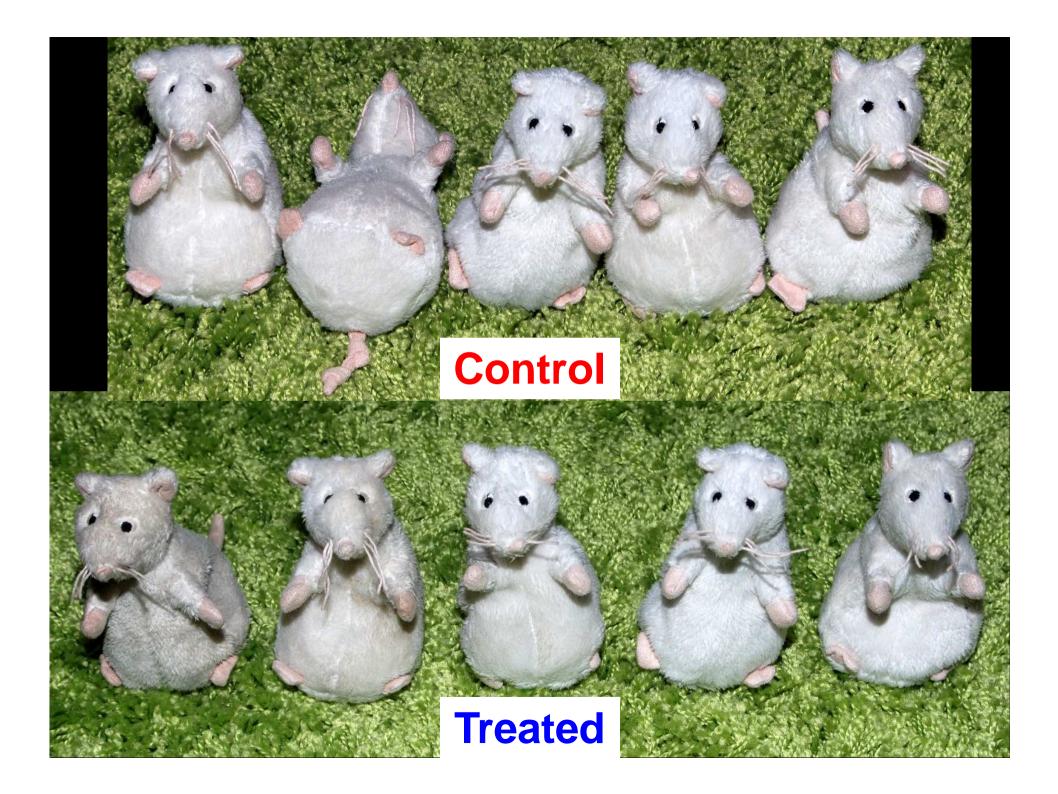
tests with humans

toxicitywanted effectcomparisonside effectswith standard

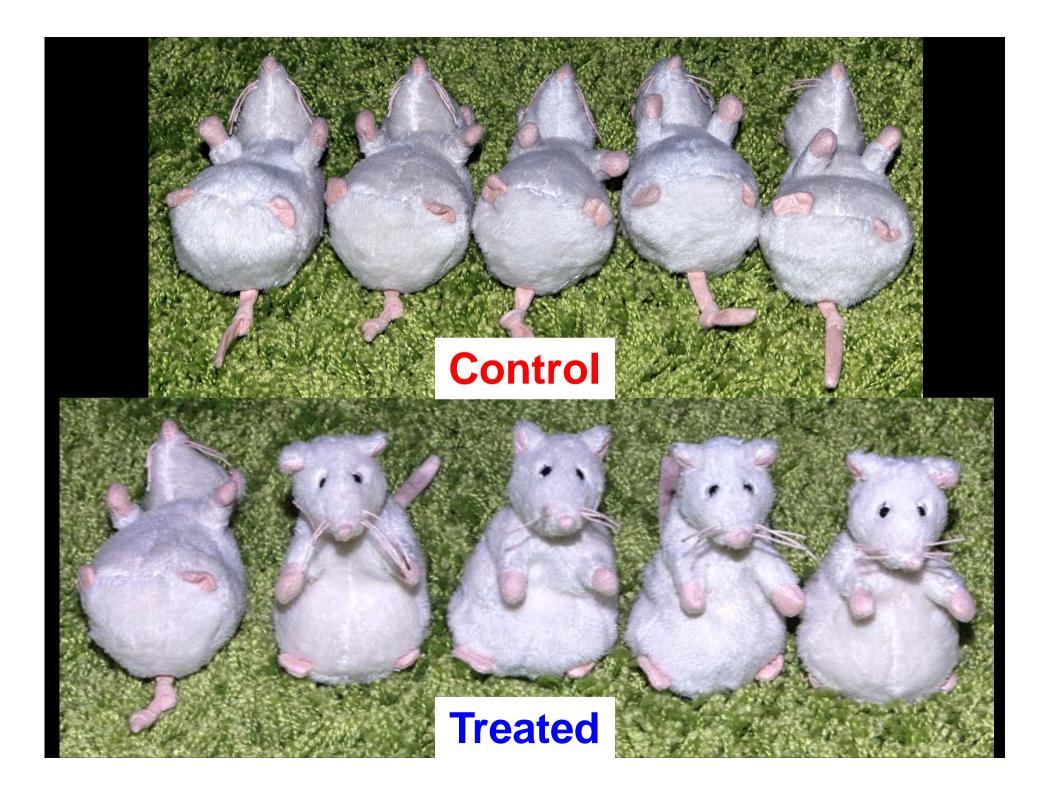
20-80 healthy 100-300 patients x00-x000 patients volunteers

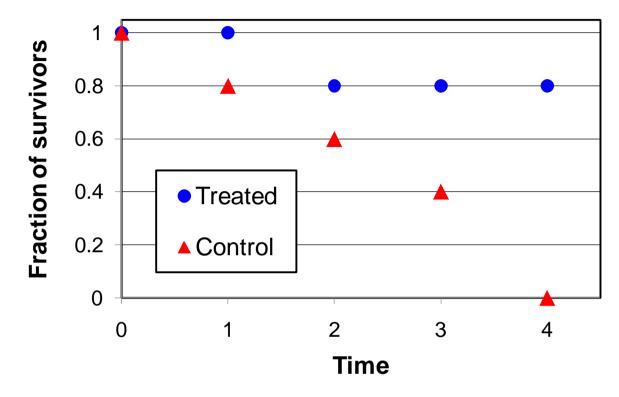
Pre-clinical studies (1)

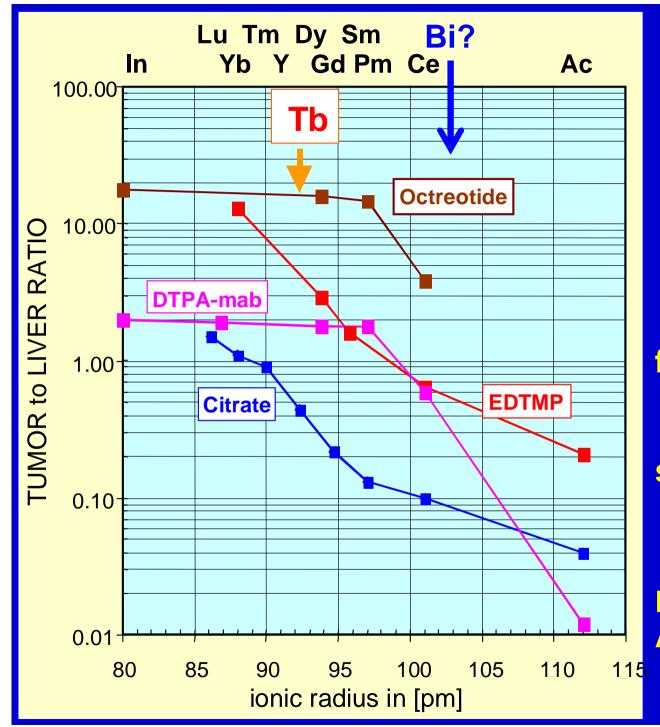



Pre-clinical studies (2)

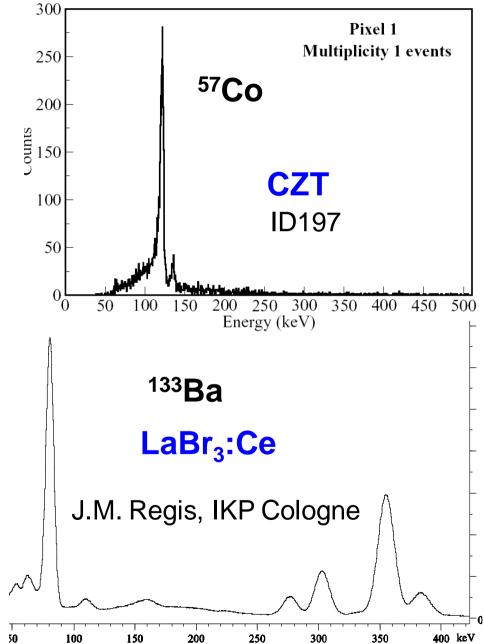
Pre-clinical studies (3)

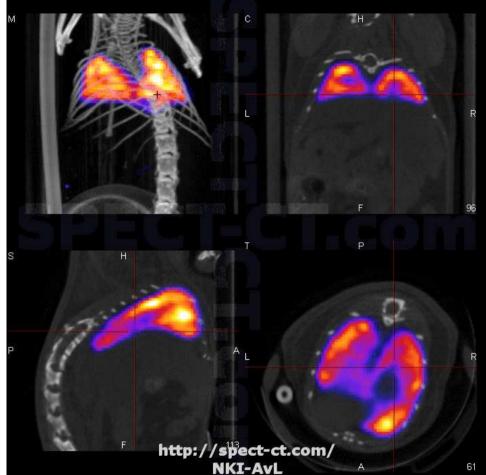




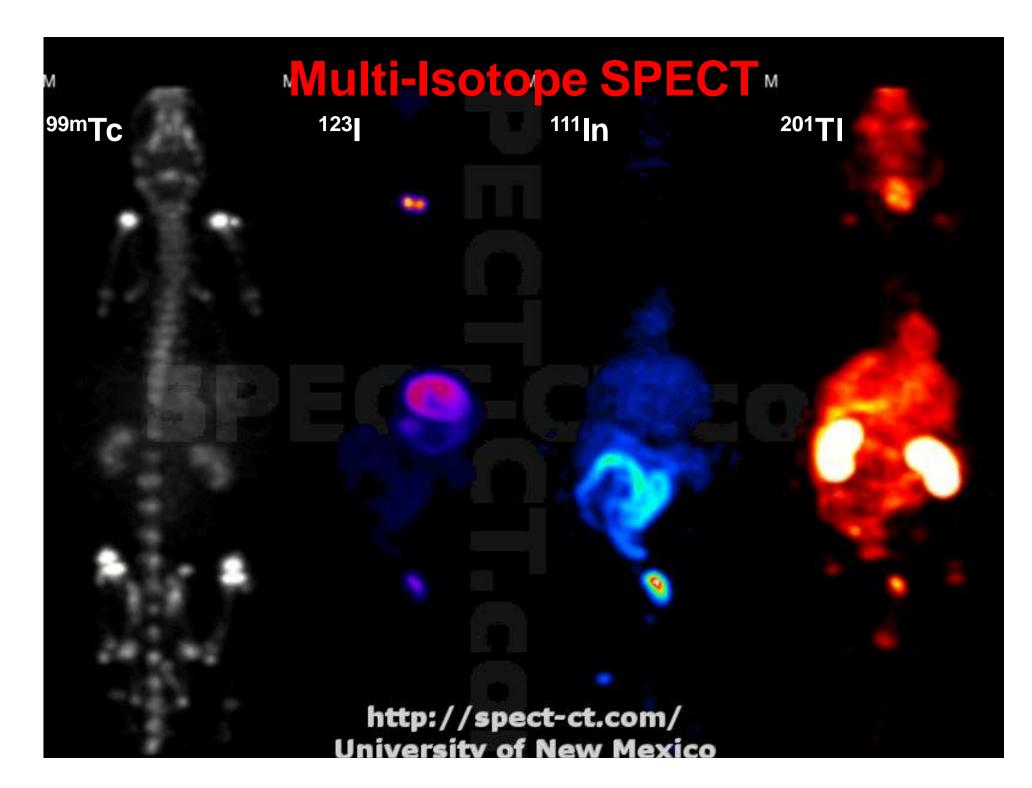


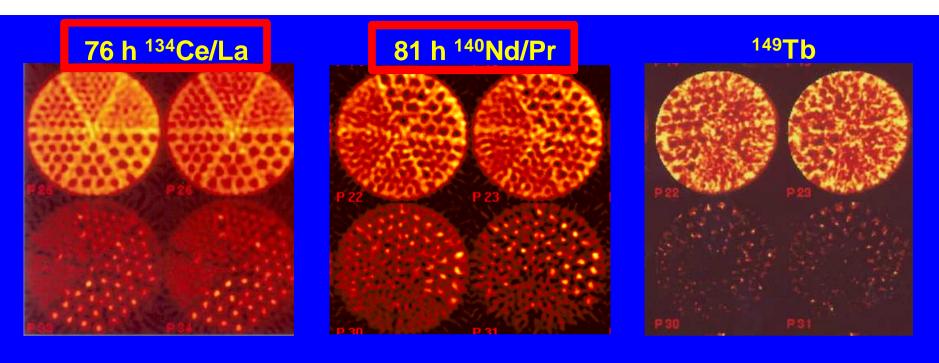
Survival curve

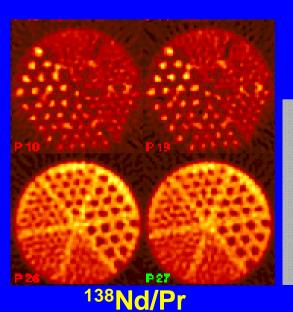

- medium survival time, median survival time, survival benefit
- shows final benefit but not detailed mechanism
- more information from bio-distribution studies
- preferentially on-line with suitable radiotracers and small animal SPECT or PET



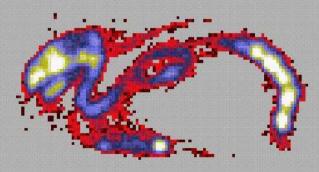
Comparison of the **bio-distribution** of different tumor seeking tracers labeled with radio-lanthanides, ²²⁵Ac and ¹¹¹In free chelates: Citrate **EDTMP** specific tracers: Octreotide and Mab Linker: Aminobenzyl-DTPA


G.J.Beyer, Hyperfine Interactions **129** (2000) 529.

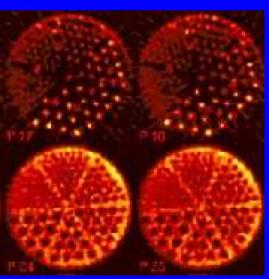

New generation of small animal SPECT



systematic biodistribution studies with different radiotracers become possible with dedicated small animal SPECT

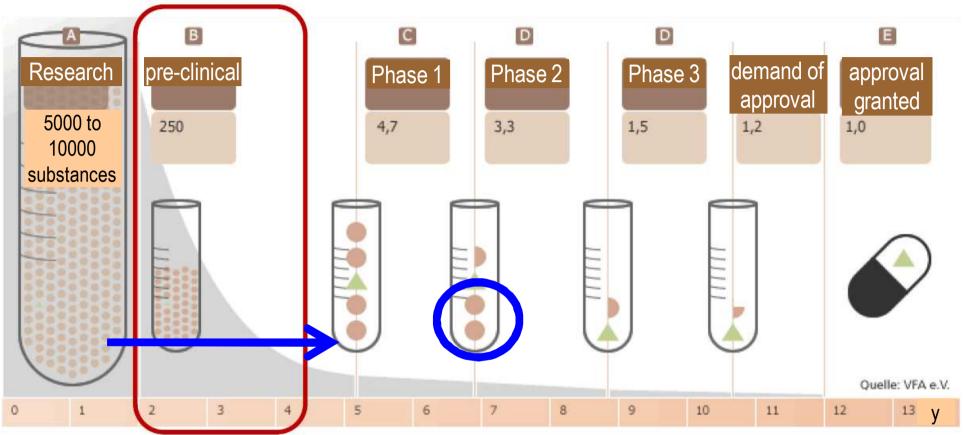


Positron emitting radiolanthanides



PET phantom studies

¹⁴²SmEDTMP in vivo study



¹⁴²Sm/Pm

17.5 h ¹⁵²Tb

Development of pharmaceuticals

Screening in vitro tests animal exp. • Multi-isotope studies • Long-lived PET tracer

tests with humans

toxicitywanted effectcomparisonside effectswith standard

20-80 healthy 100-300 patients x00-x000 patients volunteers

Classification of Isotopes for Medicine

- 1. Established isotopes "industrial" suppliers ^{99m}Tc, ¹⁸F, ^{123,125,131}I, ¹¹¹In, ⁹⁰Y supply security optimization of production/scale effects > cost reduction
- 2. Emerging isotopes "small" innovative suppliers ⁶⁸Ga, ⁸²Rb, ⁸⁹Zr, ¹⁷⁷Lu, ¹⁸⁸Re quality, GMP, certification
- 3. R&D isotopes research labs 44,47Sc, 64,67Cu, ¹³⁴Ce, ¹⁴⁰Nd, ^{149,152,155,161}Tb, ¹⁶⁶Ho, ^{195m}Pt, ²¹¹At, ^{212,213}Bi, ²²³Ra, ²²⁵Ac,... availability at affordable cost

"Small" innovative suppliers in tight collaboration with universities & research labs

- AAA CERN, Uni Geneva, Uni Lausanne, CERIMED,...
- ITG FRM2, TU Munich
- ITD FZR, TU Dresden
- (ARRONAX Subatech, Univ. Nantes)

Classification of Isotopes for Medicine

- 1. Established isotopes "industrial" suppliers ^{99m}Tc, ¹⁸F, ^{123,125,131}I, ¹¹¹In, ⁹⁰Y supply security optimization of production/scale effects > cost reduction
- 2. Emerging isotopes "small" innovative suppliers ⁶⁸Ga, ⁸²Rb, ⁸⁹Zr, ¹⁷⁷Lu, ¹⁸⁸Re quality, GMP, certification
- 3. R&D isotopes research labs 44,47Sc, 64,67Cu, ¹³⁴Ce, ¹⁴⁰Nd, ^{149,152,155,161}Tb, ¹⁶⁶Ho, ^{195m}Pt, ²¹¹At, ^{212,213}Bi, ²²³Ra, ²²⁵Ac,... availability at affordable cost

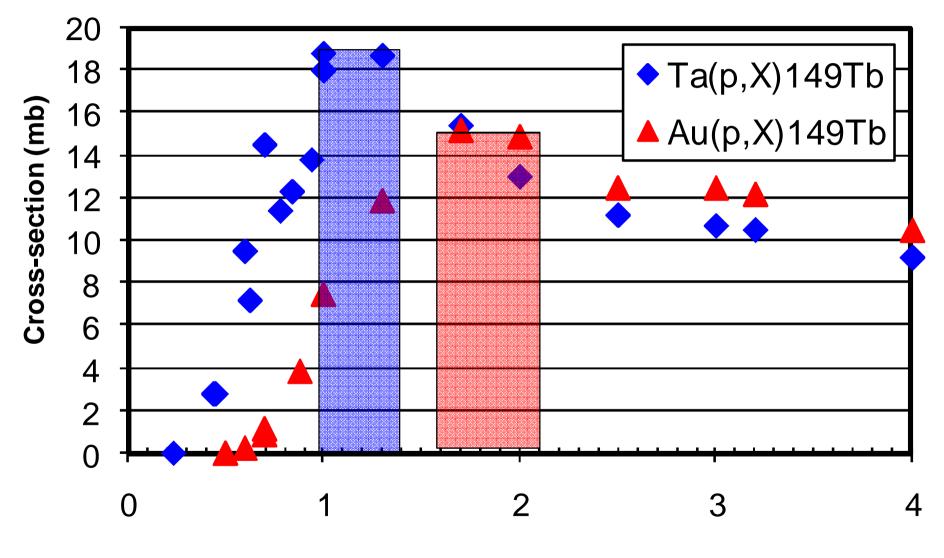
Innovative Radioisotopes for Medicine

Proposal for a European user facility providing R&D isotopes for (pre-)clinical studies + logistics.

Potential Suppliers:

- ILL Grenoble (1.5-10¹⁵ n./cm²/s high flux reactor): ¹⁶¹Tb, ¹⁶⁶Ho, ¹⁶⁹Er, ¹⁸⁶Re, ^{195m}Pt,... highest spec. activity
- ISOLDE-CERN (1.4 GeV protons + mass separation): 149,152,155Tb, 140Nd, 134Ce,... + many others carrier-free!
- PSI Villigen (1 MW SINQ + cyclotron + radiochemistry): 44Ti/44Sc, 64,67Cu, 117mSn,...
- ARRONAX Nantes (70 MeV high power cyclotron): 44,47Sc, ^{64,67}Cu, ²¹¹At,...
- Open for additional contributors...

Opportunity and duty for large scale research infrastructures!


Future of ISOLDE Isotopes for Nuclear Medicine

What should be done at CERN:

- Launch a new European collaboration for bio-medical and nuclear medicine studies with carrier-free radioisotopes from ISOLDE and other sources.
- Rebuild a radiochemical laboratory at ISOLDE for on-site chemical purification of radioisotopes.
- Prepare technological solutions for larger-scale isotope production with coming accelerator upgrades (LINAC4, SPL).

Radio- isotope	Half-life T _{1/2}	X-section (mb)	Production rate (per s)	Alternative production processes		Applications
192-ir	74 d	2.58E+00	1.0E+14	(η ,γ)	reactor	Sealed sources for industry and cancer therapy
188-W/Re	69 d	6.90E-02	2.7E+12	(2n,γ)	HFR	Radio-immuno-therapy with 188-Re
178-W/Ta	22 d	8.08E+00	3.1E+14	(p,4n)	accelerator	Generator with potential in PET
177-Lu	6.7 d	6.31E-02	2.4E+12	(n ,γ)	reactor	Therapy with labelled antibodies and peptides
166-Ho	25.8 h	5.30E-03	2.0E+11	(Π ,γ)	reactor	Therapy with labelled antibodies and peptides
149-Tb	4.12 h	9.21E-01	3.5E+13			Targeted Alpha Therapy, single cancer cell targeting
148-Gd	74.6a	5.31E-01	2.1E+13	spallation	accelerator	Low-energy alpha sources
153-Sm	46.75 h	1.41E-03	0.6E+11	(Π ,γ)	reactor	Therapy of bone metastases
127-Xe	76.4 d	9.22E-02	3.5E+12	(p,x)	accelerator	SPECT, lung ventilation and brain perfusion
117m-Sn	13.6 d	1.78E-01	0.7E+13	(Π ,γ)	HFR	Systemic radionuclide therapy
99-Mo/99m-Tc	66 h	2.78E-01	0.6E+13	(n, f)	reactor	Most important radionuclide for nuclear medical imaging
89-Sr	50.5 d	5.39E-01	2.1E+13	(n,γ), (n,p)	reactor	Palliative therapy of bone metastases
82-Sr/Rb	25.5 d	1.36E-01	0.5E+13	(p,4n)	accelerator	Generator, PET, myocardial perfusion
68-Ge/Ga	288 d	9.38E-02	3.6E+12	(p,2n), spall.	accelerator	Different PET imaging procedures, calibration of PET
67-Cu	61.9 h	3.83E-01	1.5E+13	(p,γ)	accelerator	Therapy with labelled antibodies and peptides
44-Ti/Sc	47.3 y	1.77E-03	0.7E+11	spallation	accelerator	Generator, great potential for PET
32-Si	101 y	3.03E-02	1.2E+12			Important isotope for R&D and technical application
26-AI	7.16e5 y	6.05E-03	2.3E+11	(p,n)	cyclotron	Important isotope for R&D and technical application
28-Mg	20.9 h	1.45E-02	0.6E+12			Important isotope for R&D

Spallation production of ¹⁴⁹Tb

E(GeV)

BROOKHAVEN NATIONAL LABORATORY

MEMORANDUM

Which radioisotopes will DATE: December 4, 1958 we need in 2030? TO: Addressees Below

_ _ _

SUBJECT:

Daniel M. Schaeffer, Head Mill FROM: BNL Patent Office P-701 and P-702 - PREPARATION OF CARRIER-FREE MOLYBDENUM AND OF TECHNETIUM FROM FISSION PRODUCTS

The New York Patent Group has carefully studied the information available relative to the above-identified item. The AEC does not at present desire to prepare a patent application on this item for the following reason:

"The method of producing carrier-free molybdenum-99 from fission products is disclosed in U. S. Patent Application S.N. 732,108, Green, Powell, Samos & Tucker (GNL Pat No. 58-17). It is noted that molybdenum-99 may be separated from its radioactive daughter, technetium-99, by absorption of a solution of molybdenum-99 on aluming and subsequent elution of its daughter with .1 nitric acid. While this method is probably novel, it appears that the product will probably be used mostly for experimental purposes in the laboratory. On this basis, no further patent action is believed warranted."

believe that this attitude is significant. We are not aware of a potential market for technetium-99 great enough to encourage one to undertake the risk of patenting in hopes of successful and rewarding licensing. We would reconnend against filing on the Tucker, Greene and Murrenhoff separation process."