

ClearPEM-Sonic: combined PEM and Ultrasound

<u>Benjamin Frisch</u>^a, Etiennette Auffray^b, Paul Lecoq^b on behalf of the ClearPEM-Sonic collaboration

^a DG-KTT, CERN, Geneva, Switzerland^b PH-CMX,CERN, Geneva, Switzerland

PHYSICS FOR HEALTH IN EUROPE WORKSHOP, CERN

- Introduction
- ClearPEM: a dedicated Positron Emission Tomograph
- Aixplorer: the 3D ultrasound / elastography system
- ClearPEM-Sonic: combining both worlds
- Outlook

Introduction

- ClearPEM: the dedicated Positron Emission Mammograph
- Aixplorer: the 3D ultrasound / elastography system
- ClearPEM-Sonic: combining both worlds
- Outlook

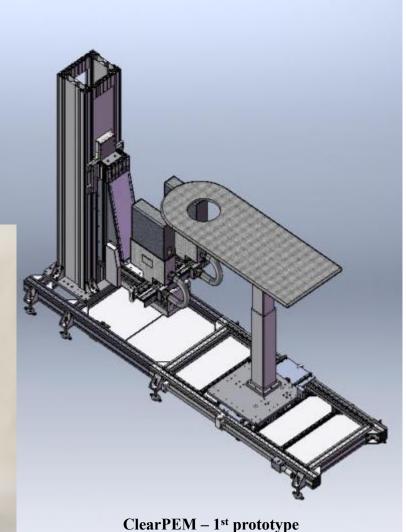
Introduction: Breast Cancer

- 1 women in 8 will develop cancer throughout her life
- ◆ 2nd cause of cancer death amongst women
- Very good survival rates if detected at an early stage
 (> 75% of patients have a 10-yr disease-free survival if tumor < 5cm)
- → Breast cancer screening is now standard technique:
- **Palpation**: low sensitivity and specificity
- X-ray Mammography: high sensitivity and specificity BUT less reliable for dense breasts, unsuited for young, pregnant women and implants
- Ultrasound: complementary to X-ray
- **Biopsy:** only to confirm previous indication
- MRI: very high sensitivity BUT low specificity and high costs
- Whole-body PET: only technique with metabolic information BUT low resolution and high costs

\rightarrow Room for a new technique

The Pink Ribbon – the international sign for breast cancer awareness

Introduction: ClearPEM-Sonic



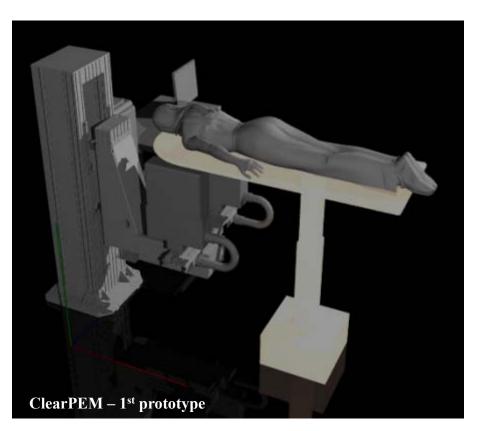
- **ClearPEM-Sonic**
 - a project in the frame of CERIMED that combines:
 - \rightarrow a dedicated mammography PET, the ClearPEM
 - \rightarrow an US transducer working in elastographic mode from SuperSonicImagine
 - partners: CERN, LIP, VUB, U2, LMA, APHM, IPC, Taguspark, **SupersonicImagine**

Combines both information:

- ClearPEM: **METABOLIC** (1 to 2mm resolution)
- US detector: MORPHOLOGIC and **STRUCTURAL**
- \rightarrow an imaging modality that improves the diagnosis for patients with breast lesions

Benjamin FRISCH, DG-KTT, CERN

Physics for Health in Europe, 3rd of February 2010


Introduction

- ClearPEM: a dedicated Positron Emission Tomograph
- Aixplorer: the 3D ultrasound / elastography system
- ClearPEM-Sonic: combining both worlds
- Outlook

ClearPEM: The Project

- A dedicated mammography PET (Positron Emission Tomograph):
 - Breast exams with the patient in prone position
 - The plates rotate around the breast
 - PEM plates can be rotated for axillary exams

• Good spatial resolution : 1.4mm (FWHM)

- Fine crystal segmentation (2x2 mm)
- Reduced parallax effect by optimised depth of interaction resolution: 2 mm

• High Sensitivity:

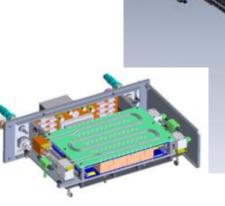
- Solid angle coverage as large as possible
- High photon interaction probability (20 mm long crystals)
- High efficiency due to good energy resolution at 511 keV: 15.9%

• Excellent Time Resolution:

- Single photon time resolution 1.5 ns (RMS)
- Coincidence window: 5.2 ns

ClearPEM: The Machine

ClearPEM – 1st prototype


APD array

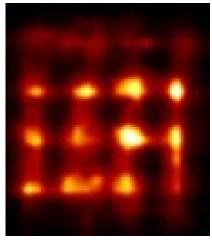
Front-back readout

APD array

Modules

- 6144 LYSO:Ce crystals in 192 matrices
- APD readout on both sides of the crystal
- Fast Front-End readout with dedicated ASICs
- Two detector plates
- → 0.8MHz acquistion rate

Detector Plate



ClearPEM: Phantom Images

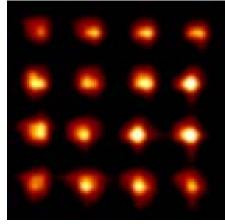
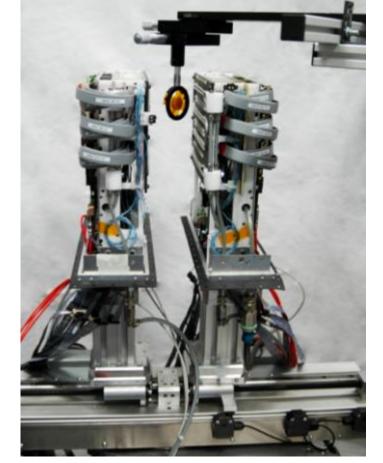


Image Setup:

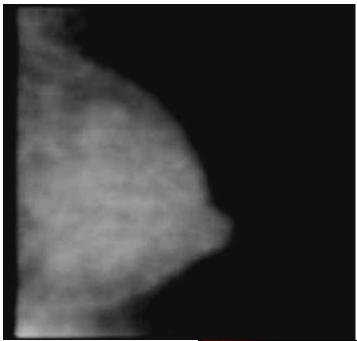

- 1mm Na-22 source moved along a grid with 5mm pitch
- 2 acquisitions with orthogonal plate orientations for each source location
- Simultaneous reconstruction of 16 source positions
- Reconstruction with and without considering DOI, i.e. the measurement of the photon interaction point with the crystal

Without DOI: increased parallax effect

With DOI

Test Setup with ClearPEM detector plates

\rightarrow Results


- Horizontal FWHM: 1.3mm
- Vertical FWHM: 1.2mm

Physics for Health in Europe, 3rd of February 2010

ClearPEM: Current Status

1st clinical images with ClearPEM

Timeline:

- 2002: Project Start
- Autumn 2008: First prototype installed (IPO Porto)
- May 2009: Start of Phase 1 clinical trial (30 patients negative for breast cancer)
- May 2010: Phase 2 trial (150 patients with breast cancer)

Conclusion:

- ClearPEM technological developments were successfully completed
- The detector **performance is excellent**
- ClearPEM is one of the most innovative APD-based PET systems

Physics for Health in Europe, 3rd of February 2010

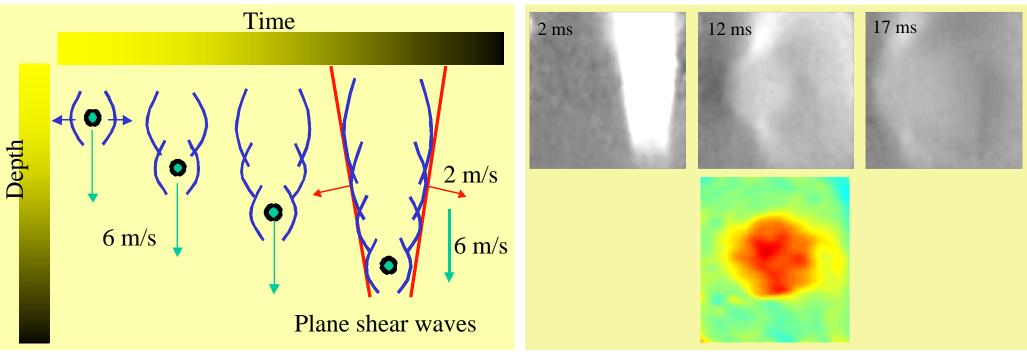
Outline

- Introduction
- ClearPEM: a dedicated Positron Emission Tomograph
- Aixplorer: the 3D ultrasound / elastography system
- ClearPEM-Sonic: combining both worlds
- Outlook

US system: Presentation

- SuperSonic Imagine Aixplorer:
 - Real-time ShearWave TM elastography: a unique technology to quantify elastic properties of tissues
 - **3D imaging** with a conventional high frequency 3D mechanical linear probe for superficial application
 - Acquisition of a 40*40*40mm^3 volume in less than 20s with high resolution B-mode and 3D SWE information
 - Voxel size 100μm*100μm*75μm

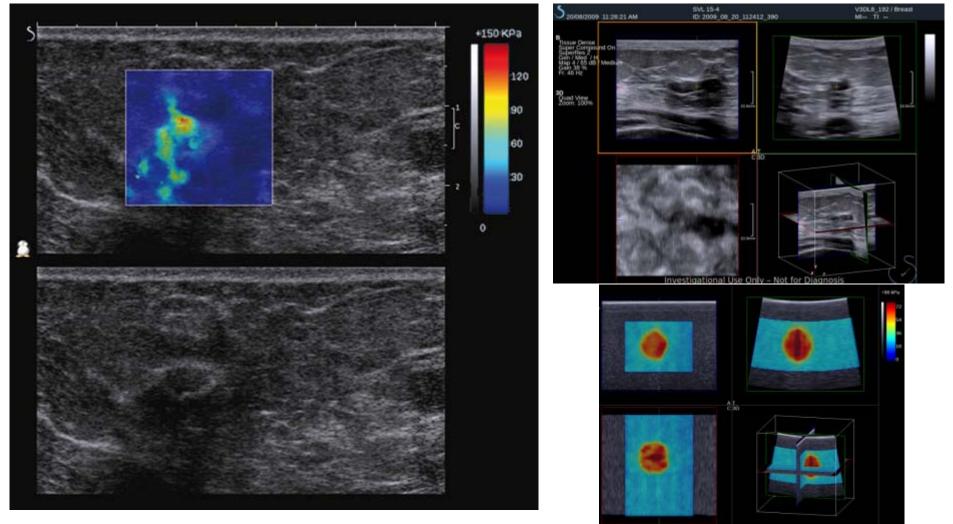
→ Provides important information for breast tumour diagnosis and follow-up:


- \rightarrow Morphology
- \rightarrow Size, shape and volume
- \rightarrow Acoustic signature and vascularisation
- \rightarrow Local and global elasticity

- SSI: injects a focalized beam that moves with supersonic speed through the tissue
 - this long focused pulse creates Dynamic Radiation Force that generates transient Shear Waves
 - this Shear Wave front is altered by different tissue stiffnesses
 - this information is captured with Ultrafast $^{\mbox{\tiny TM}}$ imaging

\rightarrow User-independent, Real-time, Quantitative method

The principle of Shear Wave generation


Shearwave propagation around a lesion

Physics for Health in Europe, 3rd of February 2010

US system: 2D and 3D Information

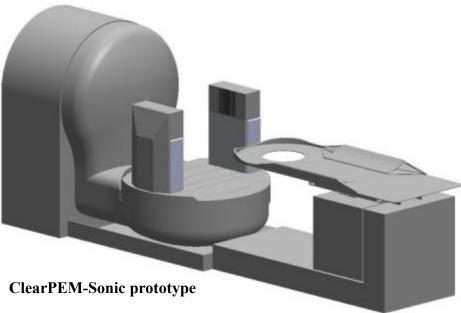
2D image, millimetric lesion

3D image, phantom lesion

Physics for Health in Europe, 3rd of February 2010 Images courtesy of SuperSonic Imagine

Outline

- Introduction
- ClearPEM: a dedicated Positron Emission Tomograph
- Aixplorer: the 3D ultrasound / elastography system
- ClearPEM-Sonic: combining both worlds
- Outlook


ClearPEM-Sonic: combining METABOLIC, MORPHOLOGIC and STRUCTURAL information into a multimodal PEM-US imaging technology

Breast contention

- Patient shall not change her position during the whole exam
- Breast shall not move during the whole exam

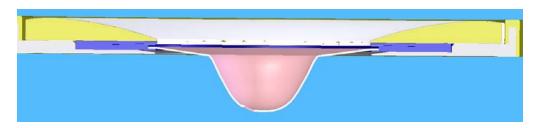
Mechanical integration

- Imaging of any ROI possible with both modalities
- Modalities shall deform he breast the least possible
- Shall not interfere with the respective other modality
- Shall be user-friendly

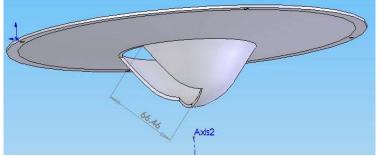
Physics for Health in Europe, 3rd of February 2010

Image Fusion

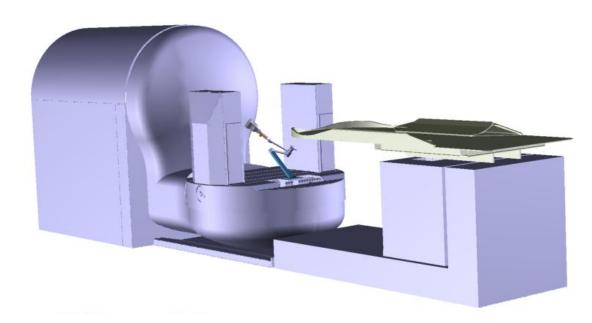
 Images from both modalities must be fused with sufficient precision

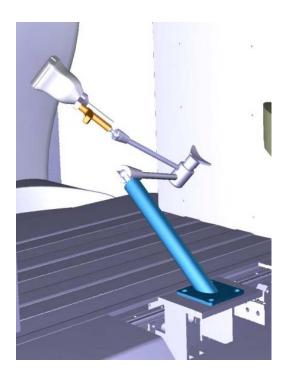


ClearPEM-Sonic: Breast Contention


- Best Solution:
 - conical geometry adapted to the shape of the breast
 - Window places the US transducer into direct contact with the breast
 - Cone manually rotatable around the vertical axis
 - Different cones realised with different inner diameters and vertical elongations for varying breast sizes
- Main Advantage: No Compression
 - more **comfort for the patient**
 - anatomically correct imaging

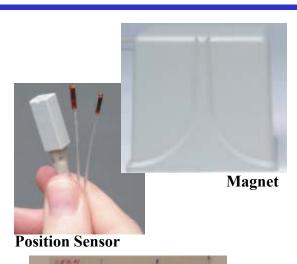
Physics for Health in Europe, 3rd of February 2010

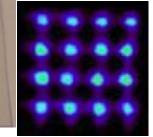


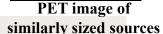


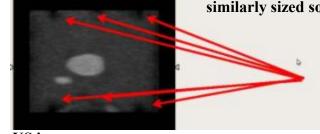
ClearPEM-Sonic: Transducer Arm

- US transducer fixed to an arm that is fixed on the PET platform at 90 degrees to the PET plates:
 - Arm can place the transducer with any inclination in any position required by the operator
 - Arm can be removed for the initial PET exam
 - Possibility to acquire an additional PET image together with the US image

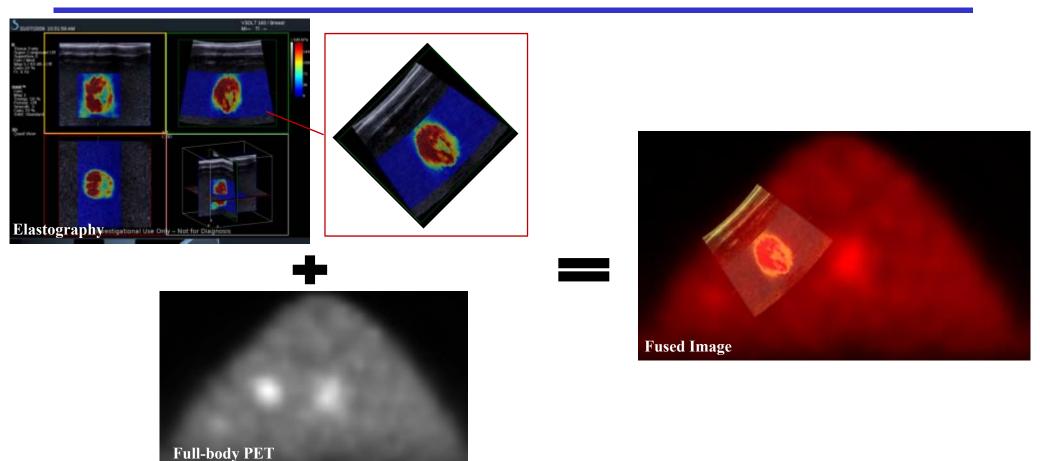



ClearPEM-Sonic: Image Fusion


- Images from both modalities need to be combined
 - PET and US do not see the same object
 - Desired mapping precision : ≈1mm
- Localization in space:
 - PEM image position known in reference to the PEM plates
 - US transducer somewhere in the space
 - » need to localize the transducer position
 - \rightarrow magnetic positioning system: Ascension trakSTAR
 - → 6D positioning (transducer position and inclination in space) with millimetric precision
 - » Induce artificial common features in both images
 - → Fiducial markers visible by both the PET and the US modality, i.e. 511keV emitter in aluminium housing
 - » Use natural common features, like the skin and chest wall
- Software Fusion
 - Offline Reconstruction
 - Distortions between both images accounted for by means of common features



Fiducial Markers



US image

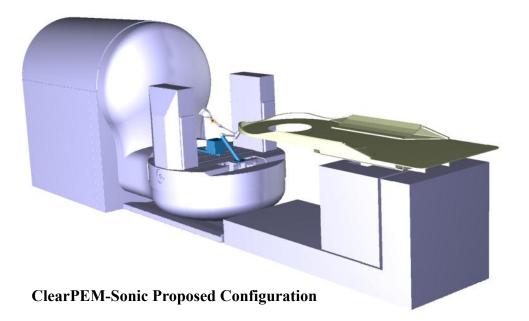
ClearPEM-Sonic: Proof of Concept

- Agar-Agar / Gelatin phantom with lesions (developed by Dang JUN from Brussels University, see his talk)
- First image taken with SSI Aixplorer in elastographic mode, second image taken with full-body PET (IPO)
- → Reconstructed images (courtesy Dang JUN) show it is possible to match both images using fiducial markers and the magnetic positioning system

Physics for Health in Europe, 3rd of February 2010

Outline

- Introduction
- ClearPEM: a dedicated Positron Emission Tomograph
- Aixplorer: the 3D ultrasound / elastography system
- ClearPEM-Sonic: combining both worlds
- Outlook


Outlook

- Project status:
 - ClearPEM (Porto prototype): Phase 1 clinical trials ongoing
 - SuperSonic Imagine Aixplorer with 3D package : Clinical Trials ongoing / Commercial Release

Spring 2010

- ClearPEM-Sonic (installation at Hopital Nord, Marseille):
 - Assembly well advanced
 - Expected delivery: Spring 2010
 - Expected Start of clinical trials: Summer 2010
- Possible further implementations:
 - Whole-breast 3D US imaging
 - Biopsy
 - SPECT

