Physics for Health in Europe

Overview of Session I Radiobiology in Therapy and Space Science Chairman: Marco Durante Reporter/Rapporteur Bleddyn Jones MD [Prof. Clinical Radiation Biology], Gray Institute for Radiation Oncology & Biology, & Particle Therapy Cancer Research Institute, Oxford Physics, UK.

Initial Overview

- Health Physics is Healthy.
- Many promising theoretical models, projects & developments 'on the ground' especially Heidelberg Univ. Clinic.
- Wide scope for industrial + academic partnerships
- Targeting funding remains difficult need simulations of health impact for new technologies [improved diagnostic rates, cure, quality of life, reduced or increased radiation exposure & malignant induction].
- Post-exposure modification of radiation damage relevant to therapy & space travel. Radioprotection applies to both but high dose effects should not be ignored such as accumulated dose for long duration travel for cells/spores (over light years).

Director-General: Introduction & Directive

Basic research, Innovation to applications:

Example: Paul Dirac - quadratic solution for electron mechanics implied two solutions: + and - for matter and anti-matter. Positrons now routinely used in Hospitals

- Encourage dialogue
- Find which technologies for which problems, given constraints?
- Discussion should not be institution centred
- INTENSIFY DIALOGUE.... brainstorming leading to ROAD MAP & PROGRESS.

D-G`s advice....think about it

- Excellent cooperation achieved in Physics, at CERN.
- Why not in Medical Applications?
- Countries have separate laws + requirements for practice + indemnity/legal codes...difficult for a Physician to practice in more than one country...., but precedents exist...π⁻ mesons (after Fowler & Perkins)

Oral presentations

- Physics meeting biology.....new bio-agents increase efficiency of radiotherapy...reducing causes of radioresistance
- Initial DNA events in ion beam therapy....relative immobility of damaged sites ...chromosomal events → low dose malignant induction, high dose cell kill.
- Space radiation: considerable overlap with particle therapy especially radioprotection, but more cyclical, repeated exposures over longer times to high doses + mixed low & high LET particles. Weather.
- MC-Fluka code applications in TPS, PET !

Oral presentations

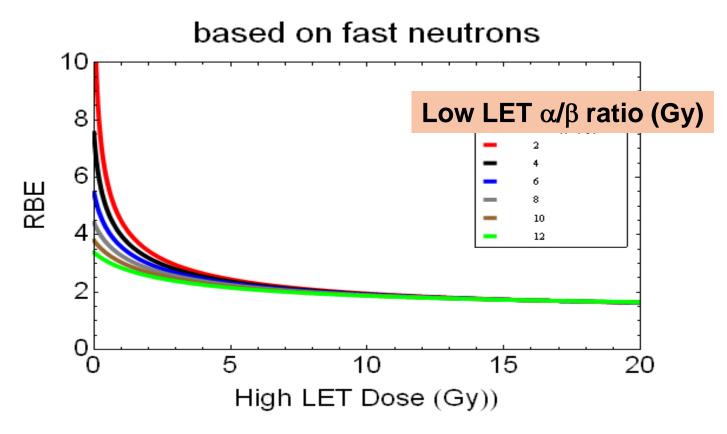
- Experimental particle therapy facility at CERN...what is minimal requirement? Beyond accelerator advances, cells could be tested, but more RBE tissue animal experiments necessary.
- For real benefits to humanity, Ion Therapy at CERN (maybe under auspices of Univ. Geneva + EU).....with 'open access'.
- Heidelberg treatment planningbiological dose distributions + assumptions made. Plans for TPS at INFN, Torino Italy with IBA (Brussels) extension of LEM.

Oral presentations

- Synchrotron micro-beam radiation for brain tumours: good tissue sparing, use of nano-particles discussed for several years but also some risk of carcinogenesis.
- Needs longer-term studies in larger animals to determine realistic late-effects...e.g. small linear areas of hypoplasia (reduced cell density along radiation tracks) may interact + ageing processes in humans...but better than we can achieve at present?
- ? Re-ionisation of cytotoxic platinum (from PI covalently bound to proteins) is feasible during the synchrotron radiation, allowing further cell kill...if and only if ionised PI diffuses to DNA.....this is a type of experiment that could be done at CERN + Grenoble.
- Capture for PI needs to be studied further in proton and ion beam therapy also

Some topics covered in posters include

- Amorphous track models.....better access to codes by forming a library
- M-C simulation methods....many applications
- RBE prediction....by theory...many unknowns; all models provisional [Newton].
- Vibration patterns in DNA....resonances? [Some chromosomes more susceptible than others?]
- Red blood cell membrane damage as surrogate for radiation exposure levels at low dose.
- Anti-protons....'event size' is large but peak RBE is excellent....could be used as boost....one visit to CERN?
- Radiation collagen cross links causing scaring in cardiac tissues...are they repairable, or digestible is next question?

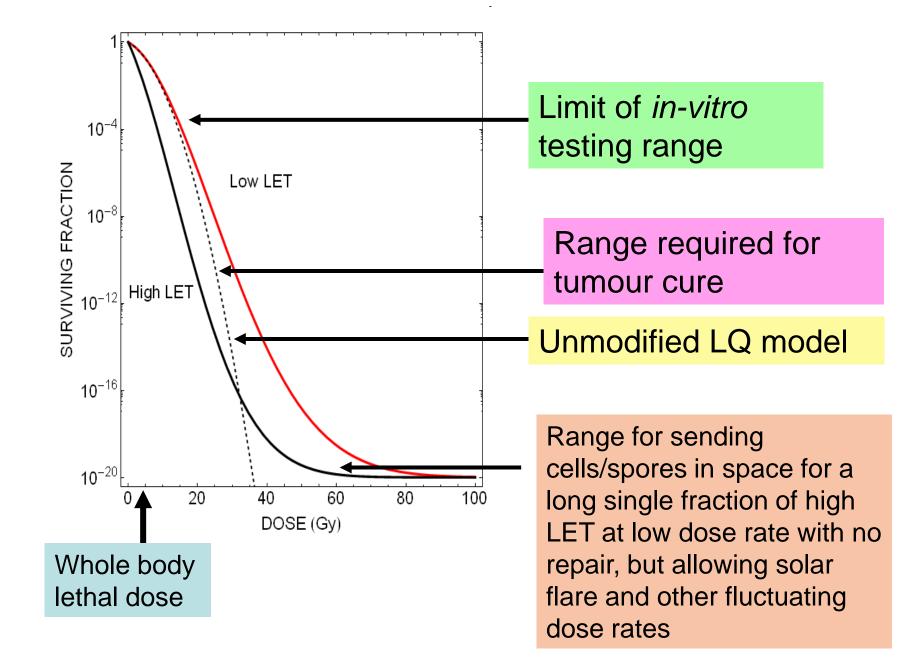

What remains to be done?

╇

- Better RBE prediction ...refinement of models, robust linkage to α/β of reference radiation.
- RBE at higher doses (lower surviving fractions)....necessary for larger fraction sizes....LEM based on low dose so needs extension.
- Animal data testing...with robust numbers...for late tissue effects.
- Better malignant induction probabilities (MIP) in treatment planning? Because high LET is more carcinogenic per cell, so minimise beam tissue-traversion distances.
- Gantry requirements: cost versus better dose distributions + total tissue traversion...relating to MIP.
- Ultra high dose rates –will consume oxygen faster than replacement diffusion.
- Verification of dose position with better accuracy.

LEM & RBE

- At present LEM underestimates RBE...accuracy ~10 25%; most work done in CHO-V79 cells with high α/β ratio.
- Implication 1: if RBE is then higher in more slowly growing tumour and high dose confined to tumour....will get extra tumour RBE effect & excellent control
- Implication 2: if RBE is higher in critical normal tissue, then dose planning constraints need to be very demanding.....achievable with C⁶⁺ in most applications.
- With increased dose per fraction these may change.....as in Japanses lung experience



RBE variation mainly found at low dose per fraction, with greater range in late-reacting tissues (low α/β ratio).

Note: most high-LET assays done using low α/β ratio endpoints using short term assays using rapidly dividing cell systems such as Chinese Hamster Ovary- V79 hybrid cells (respond like brown and green lines).

More experimental work

- Animal models (in-bred systems) show very steep dose responses for spinal cord paralysis. Dose-response gradient cannot be same as human.
- Human data... more heterogeneityof radiosensitivities, epigenetics, other simultaneous pathologies, vascular disease and lifestyle influences (smoking, diet etc).

Radio-surgery mentioned: comparing particles with surgery for cancer

- Particle therapy is comparable with 'keyhole' surgery ?
- Keyhole was proven in randomised trials to be cost–effective, by reducing hospital admission times....which persuaded Governments to adopt rapidly.
- Same standard needs to be applied in particle therapy.

Interactions with molecular based treatments

- Repair inhibitors....? Repair promoters...?
- Re-oxygenating anti-proliferative drugs.... McKenna showed examples using several signal transduction inhibitor drugs.....if these work, then lower LET particles may be sufficient protons, helium may be as good as carbon & neon,
- Neo-adjuvant priming of tumour...drugs to cause shrinkage, re-oxygenation, improved treatment geometry might allow far higher dose to be given with safety
- Testing of concept in clinic at European Ion Beam centres?

Weakness of CPT: image dependency

- Non-image-dependent therapies should interact constructively; chemotherapies + radiation.
- Some drugs potentiate high LET particle therapy ...those which selectively increase β parameter, α increases > β at high LET. [TEMOZAR/TEMODAL]
- After surgery? Particles must have role after surgery, when no 'visible' tumour, but target is a volume with moderate to high risk of recurrence.

BUT,

 Diagnostic resolution improvements will benefit particle therapy, and confirm beam positions, aid early diagnosis and help provide more 'ideal' patients for particle therapy

Choices ... need to be researched

- Particle type: protons, helium, neon, oxygen, carbon ions.
- Some particles might be preferred on their physical basis e.g. He ions in head, neck, near brain and spinal cord, according to local anatomy.
- What molecular-based treatment to include.....and when during treatment?
- Comparative trials; mixtures of each + molecular approaches....reducing radioresistance & hypoxia?

Summary

- Europe has good range of research in radiobiology....but from past experience of fast neutrons, needs careful & totally comprehensive approach at highest scientific level.
- Applied radiobiology is complex and includes physics, medicine, biology and computing; with 3-D tissue anatomy + reliable ∆ RBE with dose in different tissue types....not trivial.
- CERN could be provider of definitive solutions...but would need partnerships + comprehensive facilities (cellular+animal imaging + analysis of human irradiations...for Europe & perhaps worldwide??
- Suggest feedback to marco.silari@cern.ch