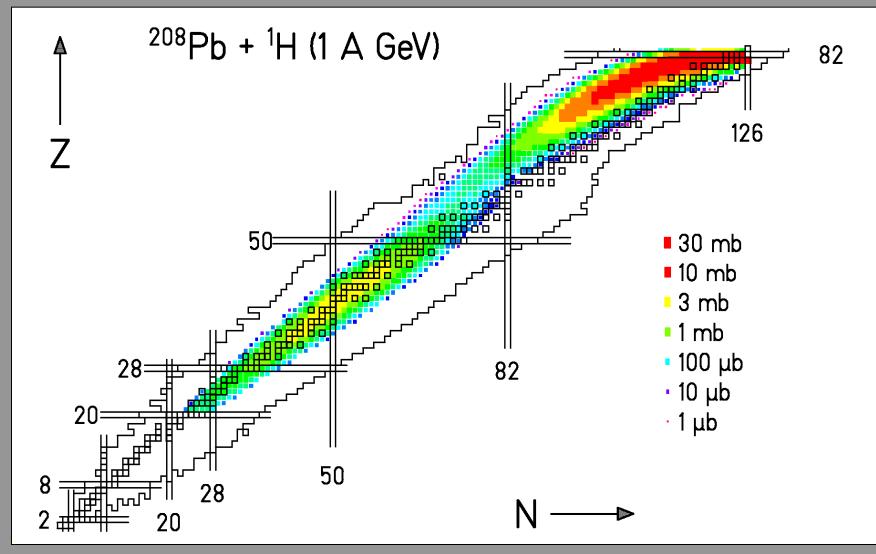
# Preclinical studies with non-standard and carrier-free radioisotopes from ISOLDE-CERN


**Gerd-J. BEYER** Isotope Technologies Dresden (ITD), Germany formerly CERN and Hôpital Universitaire de Genève, Switzerland

> **Ulli Köster** Institut Laue Langevin, Grenoble, France

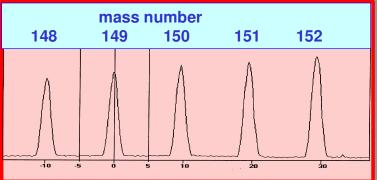
> > Helge Ravn formerly CERN

PHYSICS FOR HEALTH IN EUROPE WORKSHOP 2-4 February 2010

# **High-energy proton induced reactions**



High-energy proton induced reactions can produce most of the isotopes of the chart of nuclides.


# **Isotope Separation On-Line**

target - ion source

proton beam (1.4 GeV)

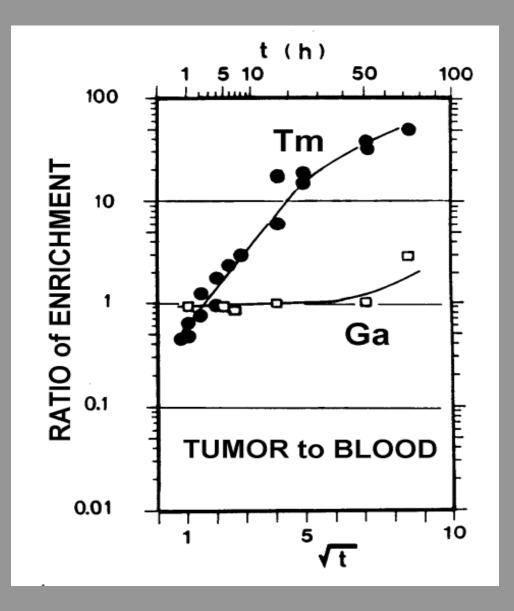
#### analysing magnet

# radioactive ion beams



# Radioisotopes available at ISOLDE-CERN

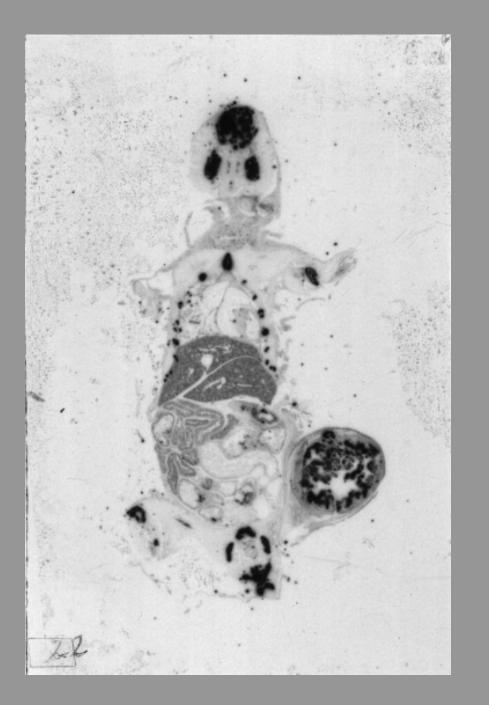
| 1<br>H   |            |                       | Isoto     | Isotopes on-line separated at ISOLDE                                     |           |                 |                 |      |          |           |          |          |          |          |          | 2<br>He  |          |
|----------|------------|-----------------------|-----------|--------------------------------------------------------------------------|-----------|-----------------|-----------------|------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|
| з<br>Li  | 3 4<br>Be  |                       | Long      | Long-lived isotopes available at ISOLDE 5 6 7 8<br>B C N O F             |           |                 |                 |      |          |           |          |          |          | 9<br>F   | 10<br>Ne |          |          |
| 11<br>Na | l 12<br>Mg |                       | Deca      | Decay daughters of ISOLDE beams 13 14 15 16<br>Al <mark>Si P</mark> S Cl |           |                 |                 |      |          |           |          |          | 17<br>Cl | 18<br>Ar |          |          |          |
| 19<br>K  | Ca         | Sc                    | 22<br>Ti  | 23<br>V                                                                  | Cr        | Mn              | Fe              | Co   | 28<br>Ni | Cu        | 30<br>Zn | 31<br>Ga | Ge       | As       | Se       | 35<br>Br | 36<br>Kr |
| 37<br>Rb | 7 38<br>Sr | 39<br>Y               | 40<br>Zr  | 41<br>Nb                                                                 | 42<br>Mo  |                 |                 |      |          | 47<br>Ag  | 48<br>Cd | 49<br>In |          | 51<br>Sb | 52<br>Te | : 53<br> | 54<br>Xe |
| 55<br>Cs | Ba         | La                    | Hf        | Ta                                                                       | W         | <mark>Re</mark> | <mark>Os</mark> | lr 🛛 | Pt 🛛     | Au        | Hg       | П        | Pb       | Bi       | Po       | At       | Rn       |
| 87<br>Fr | 7 88<br>Ra | 89<br><mark>Ac</mark> | 104<br>Rf | 105<br>Db                                                                | 106<br>Sg | 107<br>Bh       | 108<br>Hs       |      |          | 111<br>Rg | 112      | 113      | 114      | 115      | 116      |          | 118      |


|    | 58 | 59 | 60 | 61   | 62 | 63       | 64 | 65 | 66 | 67 | 68  | 69  | 70  | 71        |
|----|----|----|----|------|----|----------|----|----|----|----|-----|-----|-----|-----------|
| Ce | •  | Pr | Nd | Pm 👘 | Sm | 63<br>Eu | Gd | Tb | Dy | Но | Er  | Tm  | Yb  | Lu        |
|    | 90 | 91 | 92 | 93   | 94 | 95       | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103       |
| Th |    | Pa | U  | Np   | Pu | Am       | Cm | Bk | Cf | Es | Fm  | Md  | No  | 103<br>Lr |

Currently available: more than 1000 different radioisotopes Saturation activities of longer-lived radioisotopes: GBq and more

# **Content:**

- Bio-Medical research performed at ISOLDE illustrating potential and possibilities
- Identify questions that require access to non-standard research isotopes
- Future possibilities at CERN

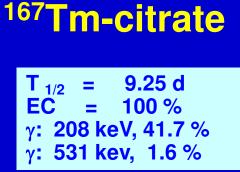

# Main Focus: Endoradionuclide Therapy



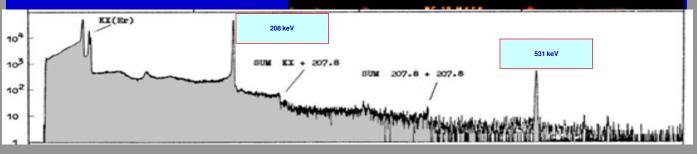
**Direct comparison** <sup>67</sup>Ga-Citrate and 167**Tm-Citrate** in tumor bearing mice

Lanthanides show much faster blood clearance compared to Ga

G.J.Beyer, W.G.Franke, K.Hennig et al. Intern.J.Appl.Rad.Isot. 29, 673 (1978)




Autoradiogram of a whole body sagittal slice of a tumor bearing mouse 24 hours after injection of 0.4 MBq of <sup>167</sup>Tm-Citrate


Lanthanides are unspecific tumor seeking tracers

G.J.Beyer, R.Münze et al., in: "Medical Radionuclide Imaging 1980" IAEA Vienna, (1981)Vol.1 p.587

# 1980



Production route: Ta (p,spallation) CERN – ISOLDE on-line mass separation cation exchange

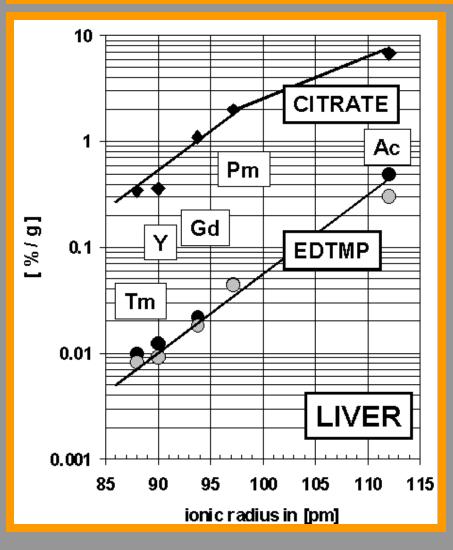


Planar scintigraphy of the

head of a lymphoma

patient 5 h p.i.

2 mCi

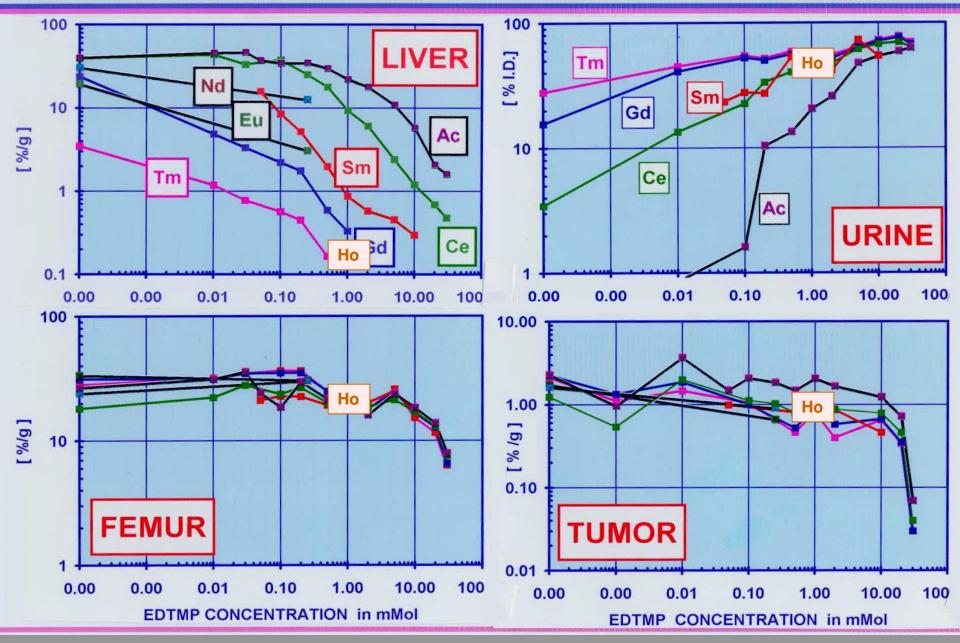

<sup>167</sup>**Tm**-

citrate

First scintigraphic examination in humans using mass-separated lanthanides produced at CERN ISOLDE

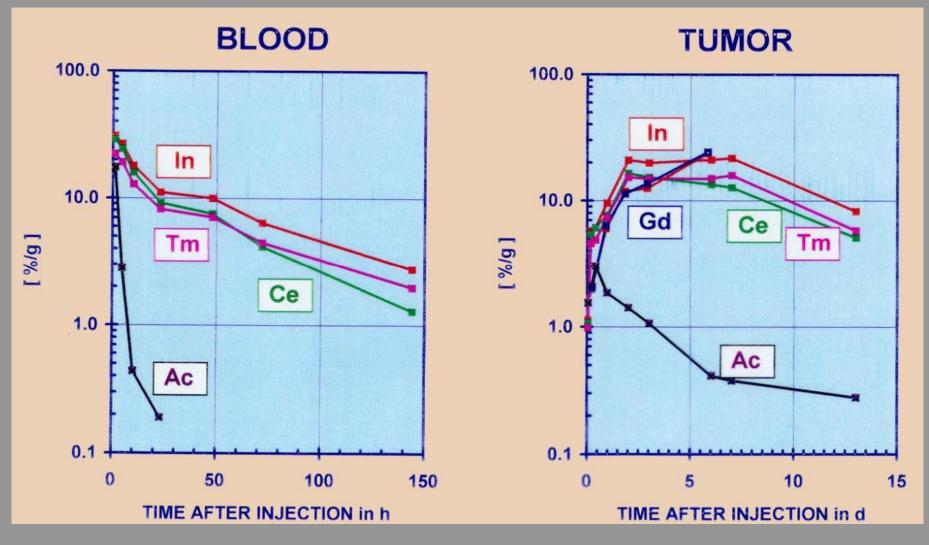
G.J.Beyer et al., Medical Radionuclide Imaging 1980, IAEA Vienna (1981) 587

# Simultanous injection of an isotope cocktail of rare earth isotopes

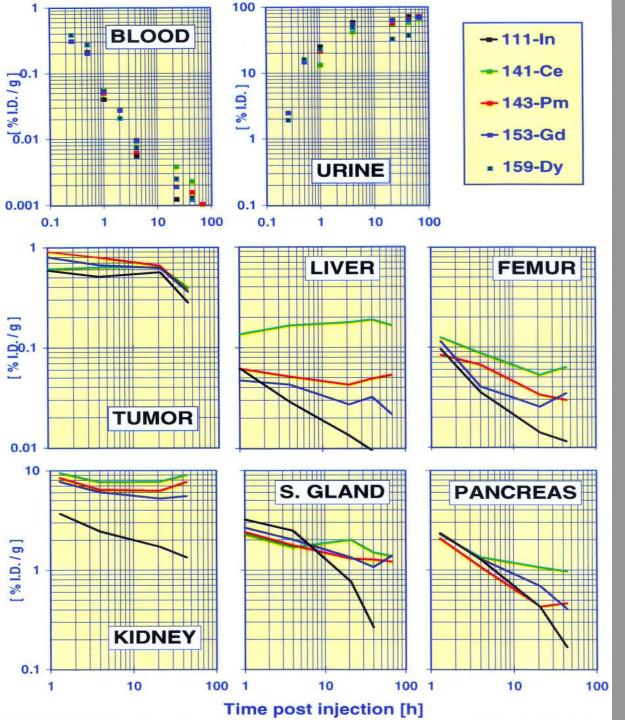



Liver uptake of <sup>225</sup>Ac and a mixture of carrier-free radioyttrium and radio-lanthanides (<sup>167</sup>Tm, <sup>88</sup>Y, <sup>153</sup>Gd, <sup>143</sup>Pm and <sup>225</sup>Ac, injected in citrate and EDTMP containing solution) in tumor bearing rats (mamma carcinoma) 5 hours after injection. The injected volume was 0.5 ml, the ligand concentration was 20 mMol at pH=7

G.J.Beyer, R.Bergmann et al., Isotopenpraxis 26,111 (1990)

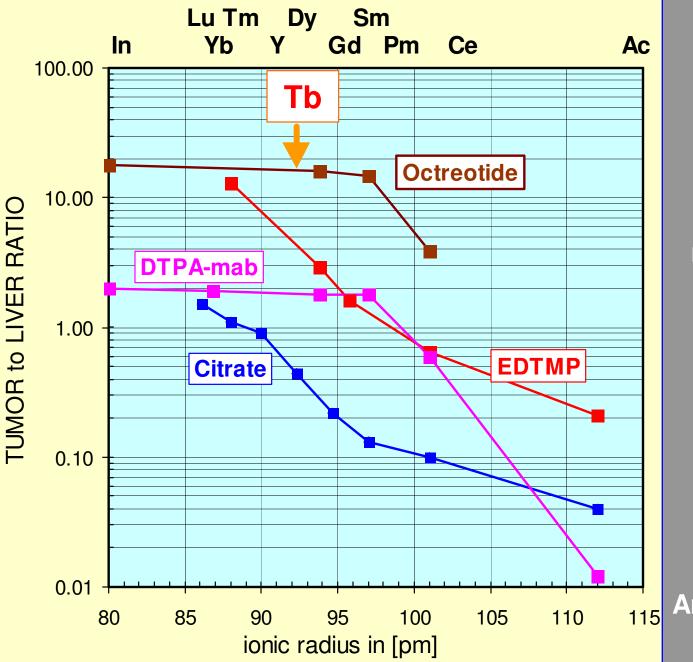

#### LOW MOLECULAR WEIGHT CHELATORS: EDTMP

#### BIODISTRIBUTION




G.J.Beyer, R.Offord, G.Künzi et al. Nuclear Medicine and Biology 24 : 367-372, (1997)

# Aminobencyl-DTPA-anti CEA-mab: Comparison of <sup>111</sup>In with radiolanthanides



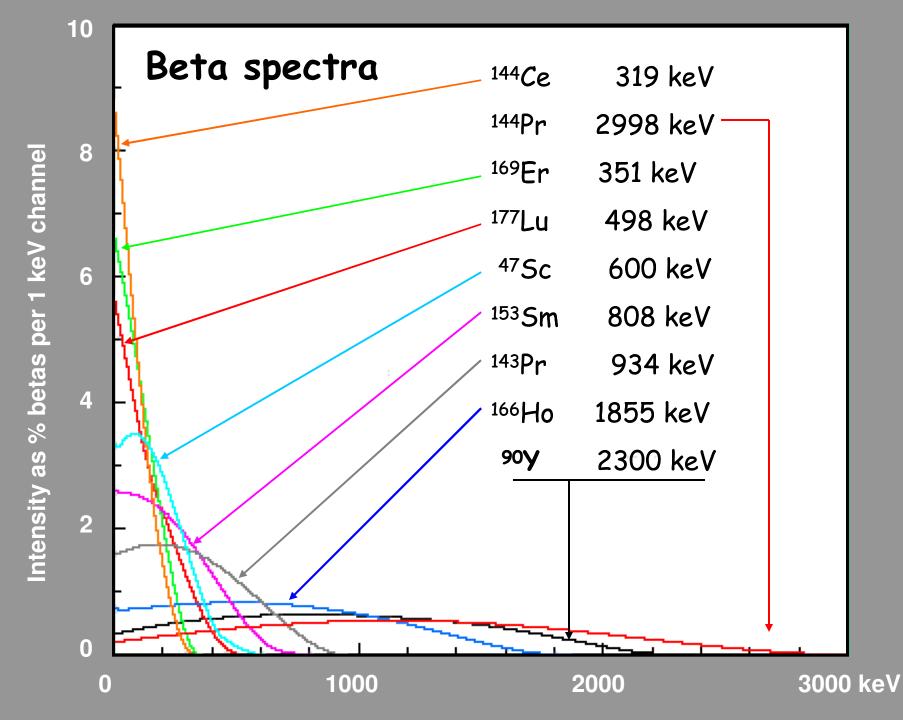

G.J.Beyer, R.E.Offord, G.Künzi et al. Journal of Labelled Compounds and Radiopharmaceuticals, XXXVII, 292, (1995)



Octreotideaminobencyl-DTPA: Comparison <sup>111</sup>In with Ianthanides

G.J.Beyer, R.E.Offord, R.Werlen et al. Europ.J.Nuclear Medicine **23**, 1132, (1996)




Comparison of the bio-distribution of different tumor seeking tracers labeled with radio-lanthanides, <sup>225</sup>Ac and <sup>111</sup>In

free chelates: Citrate EDTMP specific tracers: Octreotide and Mab Linker: Aminobenzyl-DTPA

# Questions to be answered:

 Relationship between particle-energy and therapeutic response, depending on tumor size Variation of radionuclides with different particle-energy:
→ need for metallic B<sup>-</sup>-emitters with very different energy
→ need for alpha emitting nuclides

2. Relationship between radiation dose delivered
to a lesion and the therapeutic response
Individual in-vivo dosimetry by quantitative PET imaging:
→ need for B+-emitting metallic radionuclides



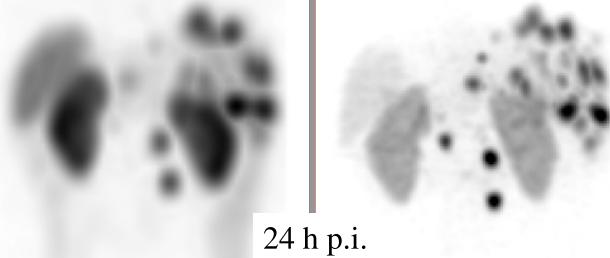
### Selected radionuclides of the Rare Earth Elements with therapeutic potential

| NUCLIDE | T1/2   | Radiation | Emax   | E(mean) | range | volume    | Εγ      | <b>Ι</b> γ(*) | production                         |
|---------|--------|-----------|--------|---------|-------|-----------|---------|---------------|------------------------------------|
|         |        |           | [MeV]  | [MeV]   | [µm]  | factor    | [keV]   | [%]           | route                              |
| 149-Tb  | 4.1 h  | α         | 3967.0 | 3.97    | 28    | 1         | s.Tab.1 |               | see Tab.1                          |
| 47-Sc   | 3.3 d  | β,γ       | 0.6    | 0.161   | 300   | 1 200     | 159     | 70            | 47-Caß> 47-Sc generator            |
| 90-Y    | 64.1 h | β         | 2.3    | 0.934   | 4 200 | 3 400 000 | no      |               | 90-Sr ß> 90-Y generator            |
| 137m-Ce | 34.4 h | е         | 0.2    | 0.203   | 500   | 5 700     | 254     | 11            | 136-Ce (n,γ) 137m-Ce reactor       |
| 141-Ce  | 32.5 d | β,γ       | 0.6    | 0.171   | 400   | 2 900     | 145     | 48.4          | 235-U (n,f) fis.prod. reactor      |
|         |        |           |        |         |       |           |         |               | 141-Pr (p,n) 141-Ce cyclotron      |
| 142-Pr  | 19.1 h | β,γ       | 2.2    | 0.809   | 3 500 | 2 000 000 | 1576    | 3.7           | 142-Pr(n,γ)143-Ceβ> 143-Pr reactor |
| 143-Pr  | 13.6 d | β         | 0.9    | 0.315   | 900   | 33 000    | no      |               | 142-Ce(n,γ)143-Ceβ>143-Pr reactor  |
| 147-Nd  | 11 d   | β,γ       | 0.9    | 0.27    | 700   | 16 000    | 91      | 28            | 235-U (n,f) fis.prod. reactor      |
|         |        |           |        |         |       |           | 531     | 13            | 146-Nd (n,γ) 147-Nd reactor        |
| 149-Pm  | 53.1 h | β         | 1.1    | 0.366   | 1 100 | 61 000    | weak    |               | 148-Nd(n,γ)149-Ndβ>149-Pm reactor  |
| 153-Sm  | 46.7 h | β,γ       | 0.8    | 0.269   | 1 000 | 57 000    | 103     | 28.3          | 152-Sm (n,γ) 153-Sm reactor        |
| 159-Gd  | 18.6 h | β,γ       | 1.0    | 0.312   | 800   | 23 000    | 364     | 10.8          | 158-Gd (n,γ) 159-Gd reactor        |
| 161-Tb  | 6.9 d  | β,γ       | 0.6    | 0.195   | 800   | 26 000    | 75      | 9.8           | 160-Gd(n,γ)161-Gdβ>161-Tb reactor  |
| 166-Ho  | 26.8 h | β,γ       | 1.9    | 0.694   | 3 400 | 2 200 000 | 80.6    | 6.2           | 164-Dy(2n,γ)166-Dyβ>166-Ho reactor |
| 169-Er  | 9.4 d  | β         | 0.3    | 0.103   | 200   | 360       | no      |               | 168-Er (n,γ) 169-Er reactor        |
| 175-Yb  | 4.2 d  | β,γ       | 0.5    | 0.13    | 250   | 700       | 396     | 6.5           | 174-Yb (n,γ) 175-Yb reactor        |
| 177-Lu  | 6.7 d  | β,γ       | 0.5    | 0.147   | 300   | 1 200     | 208     | 11            | 176-Yb(n,γ)177-Ybβ>177-Lu reactor  |

See presentation by M. Miederer for alpha-emitting <sup>149</sup>Tb.

# ß\* emitters for in vivo dosimetry

Scintigraphic abdominal images 5 & 24 h p.i. affected by carcinoid with extensive hepatic and paraaortal metastases.


#### Patients:

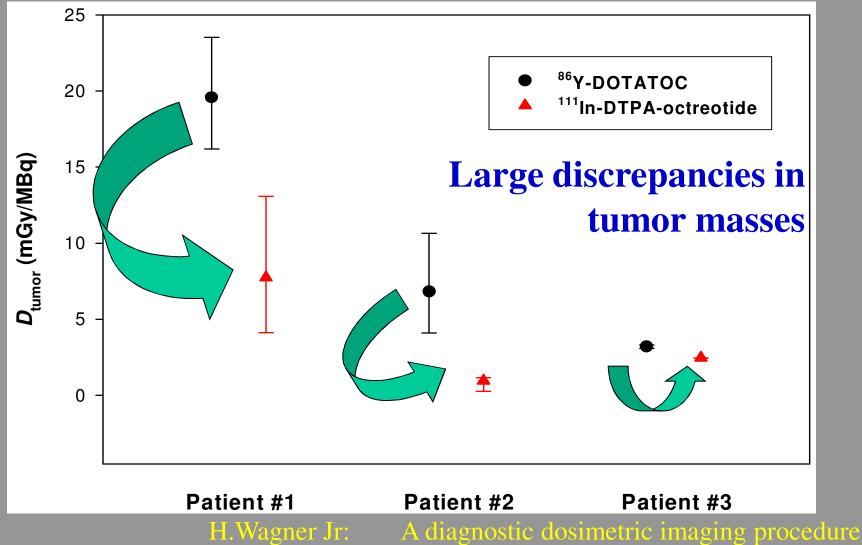
- 3 patients with metastases of carcinoid tumor
  - (histologically confirmed)
  - No the rapy with unlabeled somatostatin > 4 weeks
- Age: 46 67 years, male
- All were candidates for a possible <sup>90</sup>Y-DOTATOC therapy

# unider

[<sup>86</sup>Y]DOTA-DPhe<sup>1</sup>-Tyr<sup>3</sup>octreotide PET







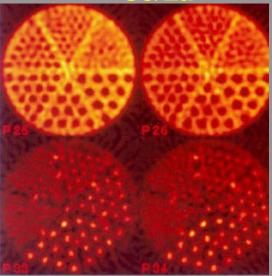

[<sup>111</sup>In]DTPA-

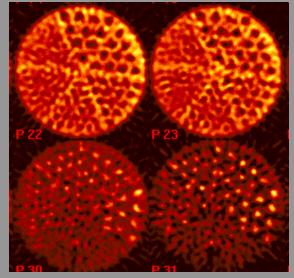
**SPECT** 

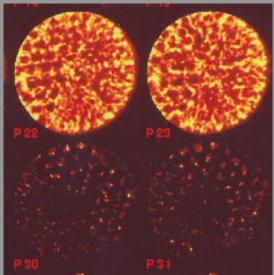


# **Radiation doses for [<sup>90</sup>Y]DOTATOC therapy** (based on [<sup>86</sup>Y]DOTATOC-PET)

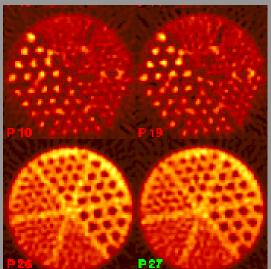



F.Rösch et.al.


will be unavoidably a part of the protocol for the radioimmuno therapy (individual in vivo dosimetry).

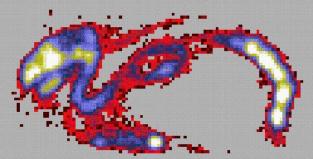

| Rar                                    | e Eart           | h Ele        | men        | <b>Positron Emitters</b> |                                                                                                                             |  |  |  |
|----------------------------------------|------------------|--------------|------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Nuclide                                | <b>T</b> 1/2     | % <b>B</b> + | MeV        | <b>MeV</b> γ / %         | Production Route                                                                                                            |  |  |  |
| <sup>43</sup> Sc                       | 3.9 h            | 88           | 1.2        |                          | <sup>43</sup> Ca (p,n) <sup>43</sup> Sc, <sup>44</sup> Ca (p,2n) <sup>43</sup> Sc                                           |  |  |  |
| <sup>44</sup> Sc                       | 3.9 h            | 94           | 1.5        |                          | <sup>44</sup> Ti decay (generator), <sup>45</sup> Sc (p,2n) <sup>44</sup> Ti<br>V, Ti (p,spall)                             |  |  |  |
| 85m <b>Y</b>                           | 4.9 h            | 67           | 2.3        | 238 34                   | <sup>86</sup> Sr (p,2n) <sup>85m</sup> Y, ISOLDE                                                                            |  |  |  |
| 86 <b>Y</b>                            | 14.7 h           | 32           | 1.2        | 637 33<br>1077 83        | <sup>86</sup> Sr (p,n) <sup>86</sup> Y<br>ISOLDE                                                                            |  |  |  |
| <sup>134</sup> Ce<br><sup>134</sup> Pr | 75.9 h<br>6.7 m  | EC<br>64     | 2.7        | No<br>605                | Ta, Er, Gd (p,spall)<br><sup>132</sup> Ba (α,2n) <sup>134</sup> Ce                                                          |  |  |  |
| <sup>138</sup> Nd<br><sup>138</sup> Pr | 5.2 h<br>1.5 m   | EC<br>76     | 3.4        | No<br>789 4              | Ta, Er, Gd (p,spall)<br><sup>136</sup> Ce (α,2n) <sup>138</sup> Nd, ISOLDE                                                  |  |  |  |
| <sup>140</sup> Nd<br><sup>140</sup> Pr | 3.4 d<br>3.4 m   | EC<br>50     | 2.4        | No<br>No                 | Ta, Er, Gd (p,spall), ISOLDE<br><sup>141</sup> Pr (p,2n) <sup>140</sup> Nd,                                                 |  |  |  |
| <sup>142</sup> Sm<br><sup>142</sup> Pm | 72.4 m<br>40.5 s | 6<br>78      | 1.5<br>3.9 | No<br>No                 | Ta, Er, Gd (p,spall), ISOLDE<br><sup>142</sup> Nd (α,4n) <sup>142</sup> Sm                                                  |  |  |  |
| <sup>152</sup> Tb                      | 17.5 h           | 20           | 2.8        | Div                      | Ta (p,spall) ISOLDE<br><sup>152</sup> Gd (p,4n) <sup>149</sup> Tb, <sup>142</sup> Nd( <sup>12</sup> C,5n) <sup>149</sup> Dy |  |  |  |

#### <sup>134</sup>Ce/La

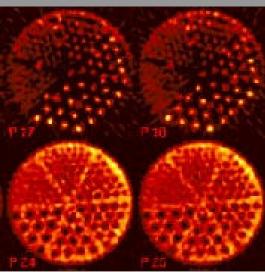







Positron emitting radiolanthanides




**PET phantom studies** 

#### <sup>142</sup>SmEDTMP in vivo study



CERN Grey Book 1997 Cover page









a-emitters for therapy

# Summary

- High-energy proton induced reactions can produce essentially all isotopes of medical interest
- High energy protons in combination with mass separation (on-line or off-line) provide a universal production method for R&D isotopes.
- These radioisotopes are practically carrier-free and of high purity.
- The universality of ISOLDE enables systematic biokinetic studies, simultaneously with different isotopes and different tracers.
- Already today ISOLDE can supply quantities of metallic PET-isotopes and α-emitters for preclinical and clinical "phase 0" studies in RIT.



Applied Radiation and Isotopes 63 (2005) 157-178

www.elsevier.com/locate/apradiso

### The US national isotope program: Current status and strategy for future success

Mark J. Rivard<sup>a,\*</sup>, Leo M. Bobek<sup>b</sup>, Ralph A. Butler<sup>c</sup>, Marc A. Garland<sup>d</sup>, David J. Hill<sup>e,1</sup>, Jeanne K. Krieger<sup>f</sup>, James B. Muckerheide<sup>g</sup>, Brad D. Patton<sup>e</sup>, Edward B. Silberstein<sup>h</sup>

The most demanding isotope supply challenge concerns the isotopes used in R&D, an area in which quantities are small, production techniques are not well established, and costs are high. Isotopes for R&D use without proven markets and profitability are not being adequately supplied.

# **Future of ISOLDE Isotopes for Nuclear Medicine**

#### What should be done at CERN:

- Launch a new European collaboration for bio-medical and nuclear medicine studies with carrier-free radioisotopes from ISOLDE and other sources.
- Rebuild a radiochemical laboratory at ISOLDE for on-site chemical purification of radioisotopes.
- Prepare technological solutions for larger-scale isotope production with coming accelerator upgrades (LINAC4, SPL).

# Possible longterm future: MW protons on Hg target

| Radio-<br>isotope | Half-life<br>T <sub>1/2</sub> | X-section<br>(mb) | Production<br>rate (per s) | Alterr<br>production | native<br>processes | Applications                                               |
|-------------------|-------------------------------|-------------------|----------------------------|----------------------|---------------------|------------------------------------------------------------|
| 192-lr            | 74 d                          | 2.58E+00          | 1.0E+14                    | (n,γ)                | reactor             | Sealed sources for industry and cancer therapy             |
| 188-W/Re          | 69 d                          | 6.90E-02          | 2.7E+12                    | (2n,y)               | HFR                 | Radio-immuno-therapy with 188-Re                           |
| 178-W/Ta          | 22 d                          | 8.08E+00          | 3.1E+14                    | (p,4n)               | accelerator         | Generator with potential in PET                            |
| 177-Lu            | 6.7 d                         | 6.31E-02          | 2.4E+12                    | (n,y)                | reactor             | Therapy with labelled antibodies and peptides              |
| 166-Ho            | 25.8 h                        | 5.30E-03          | 2.0E+11                    | ( <b>Π</b> ,γ)       | reactor             | Therapy with labelled antibodies and peptides              |
| 149-Tb            | 4.12 h                        | 9.21E-01          | 3.5E+13                    | 1                    |                     | Targeted Alpha Therapy, single cancer cell targeting       |
| 148-Gd            | 74.6a                         | 5.31E-01          | 2.1E+13                    | spallation           | accelerator         | Low-energy alpha sources                                   |
| 153-Sm            | 46.75 h                       | 1.41E-03          | 0.6E+11                    | (n,y)                | reactor             | Therapy of bone metastases                                 |
| 127-Xe            | 76.4 d                        | 9.22E-02          | 3.5E+12                    | (p,x)                | accelerator         | SPECT, lung ventilation and brain perfusion                |
| 117m-Sn           | 13.6 d                        | 1.78E-01          | 0.7E+13                    | <b>(Π</b> ,γ)        | HFR                 | Systemic radionuclide therapy                              |
| 99-Mo/99m-Tc      | 66 h                          | 2.78E-01          | 0.6E+13                    | (n, f)               | reactor             | Most important radionuclide for nuclear medical<br>imaging |
| 89-Sr             | 50.5 d                        | 5.39E-01          | 2.1E+13                    | (n,γ), (n,p)         | reactor             | Palliative therapy of bone metastases                      |
| 82-Sr/Rb          | 25.5 d                        | 1.36E-01          | 0.5E+13                    | (p,4n)               | accelerator         | Generator, PET, myocardial perfusion                       |
| 68-Ge/Ga          | 288 d                         | 9.38E-02          | 3.6E+12                    | (p,2n), spall.       | accelerator         | Different PET imaging procedures, calibration of PET       |
| 67-Cu             | 61.9 h                        | 3.83E-01          | 1.5E+13                    | (p,γ)                | accelerator         | Therapy with labelled antibodies and peptides              |
| 44-Ti/Sc          | 47.3 y                        | 1.77E-03          | 0.7E+11                    | spallation           | accelerator         | Generator, great potential for PET                         |
| 32-Si             | 101 y                         | 3.03E-02          | 1.2E+12                    |                      |                     | Important isotope for R&D and technical application        |
| 26-AI             | 7.16e5 y                      | 6.05E-03          | 2.3E+11                    | (p,n)                | cyclotron           | Important isotope for R&D and technical application        |
| 28-Mg             | 20.9 h                        | 1.45E-02          | 0.6E+12                    |                      |                     | Important isotope for R&D                                  |
|                   |                               |                   |                            | See po               | oster I             | D120                                                       |

# Thank you

for your kind attention

**Gerd Beyer** 

# **Production Routes**

|                                                           |                                                                                                                                                                                 |                                                   | 9s                                                              | 215                                                                                                             | 24 \$ 88 \$                                                  | 42 \$ 35,6 \$                                     |                                                     | 213 18 9.3 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2.00 21.0                                      | 48 m                                                        | 5,8m 56m -2m                                            |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
|                                                           |                                                                                                                                                                                 |                                                   |                                                                 | B*                                                                                                              | 245 005                                                      | . / . /                                           | 8 82 15 1                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                             |                                                         |
|                                                           |                                                                                                                                                                                 |                                                   | γ 1688; 662;<br>504                                             | γ 1091; 1073;<br>1584                                                                                           | 653, 394, 7 803,<br>551                                      | α 4.61 0 4.52<br><u>γ</u> 776 <u>γ</u> 527<br>α→m | - 18 358                                            | 2 2 99 L 200 B<br>2 2 99 L 200 B<br>2 2 5 2 98 L 200 B<br>2 2 5 2 98 L 200 B<br>2 2 98 L 200 B<br>2 2 99 L 200 B<br>2 2 90 | 812 112<br>877 171                               | β* 1.8<br>γ 240; 136                                        | v 1572. v 138 v 138.<br>446. 267                        |
|                                                           |                                                                                                                                                                                 |                                                   | Dy 147                                                          | Dy 148<br>3.1 m                                                                                                 | Dy 149<br>4.1 m                                              | Dy 150<br>7.2 m                                   | Dy 151                                              | Dy 152<br>2,4 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dy 153<br>6,29 h                                 | Dy 154<br>~ 10 <sup>7</sup> a                               | Dy 155<br>10,0 h                                        |
| i                                                         | ndir                                                                                                                                                                            | ect                                               |                                                                 |                                                                                                                 | β*<br>2 101: 1777;                                           | β <sup>+</sup><br>α 4,23<br>γ 397                 | 4 07<br>7 386 19-1148                               | ting and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ε;β*<br>α 3,46                                   |                                                             | е<br>В <sup>+</sup> 0.9; 1,1                            |
|                                                           |                                                                                                                                                                                 |                                                   |                                                                 |                                                                                                                 | 789; 1806<br>g: m                                            | 0                                                 | 176.<br>g:m                                         | 1 K 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y 81; 214; 100;<br>254                           | α 2.87                                                      | y 227                                                   |
|                                                           | Tb 144                                                                                                                                                                          | Tb 145                                            | Tb 146                                                          | b 147                                                                                                           | Tb 148                                                       | Tb 149<br>4,2m 4,1h                               | Tb 150                                              | Tb 15<br>25 s 17,6 b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tb 152<br>4,2 m 17,5 h                           | Tb 153<br>2,34 d                                            | Tb 154<br>23h 9,0h 21h                                  |
|                                                           | irec                                                                                                                                                                            | t ro                                              | utes                                                            | 7.1124                                                                                                          | + 4.0                                                        | β+<br>0.3.99<br>9 β+ 1.8<br>9 296<br>165<br>165   | 20 x 2,53                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/283 1<br>10 6+2.8<br>-344                      | β*                                                          | 1420, 748, 774<br>1420, 748, 7274                       |
| 0.1.1.10                                                  | 4743                                                                                                                                                                            | 1                                                 | 1417                                                            | 198. 894.<br>1795. 140.                                                                                         | 632 489<br>882 632                                           |                                                   | 22                                                  | 2080. BB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 411                                              | 102.83                                                      | 123 540                                                 |
| Gd 142<br>1,5 m                                           | Gd 143                                                                                                                                                                          | Gd 144<br>4,5 m                                   | Gd 145<br>85 s 23,9 m                                           | Gd 146<br>48,3 d                                                                                                | Gd 147<br>38,11                                              | ~ 90 a                                            | Gd 14<br>9,5 d                                      | Gd 150<br>1,8 · 10 <sup>6</sup> a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120                                              | 3 1 152<br>20<br>1,+- 10 <sup>14</sup> a                    | Gd 153<br>241,6 d                                       |
| β <sup>+</sup><br>γ 179                                   | β <sup>+</sup><br>γ 272, β <sup>+</sup><br>588, γ 259,<br>799, 205,<br>668, 464_                                                                                                | β* 3.3<br>y 333; 347;                             | hy 721 β <sup>+</sup> 2.3<br>β <sup>+</sup><br>y 387; 1881;     | A.                                                                                                              | ε. β*<br>γ 229: 396                                          |                                                   | ε; α 3,01<br>γ 150; 299;                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ε: α 2,60<br>γ 154; 243;                         | a 2.14                                                      |                                                         |
| 9                                                         | and a second second second                                                                                                                                                      | 630<br>Eu 143                                     | Eu 144                                                          | Eu 145                                                                                                          | 929<br>Eu 146                                                | 3,183<br>E8,147                                   | 347<br>Eu 148                                       | α 2,72<br>Eu 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 175<br>Eu 150                                    | e 1100<br>Eu 151                                            | γ97; 103<br>Eu 152                                      |
| Eu 141<br>3,3 s 40,0 s                                    | Eu 142<br>1,22 m 2,4 s                                                                                                                                                          | 2,6 m                                             | 10,2 s                                                          | 5,93 d                                                                                                          | 4,51 d                                                       | 24.0d                                             | 55,6 d                                              | 93,1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12,6 h 35,8 a                                    | 47,8                                                        | 96m 9,3h 13,33a                                         |
| v (394; v 394;<br>893) 385;<br>iv (96) 383;<br>e^; m 593p | β <sup>+</sup> 4.8<br>γ 768,<br>1023, β <sup>+</sup> 7.0<br>557                                                                                                                 | β <sup>+</sup> 4,1<br>γ 1107; 1537;<br>1913; 108; | β* 5.2                                                          | 8 1.7.<br>7 894; 1659;                                                                                          | ε. β* 1,5, 2,1<br>γ 747; 633;                                | ε; β <sup>2</sup> ; φ <b>2,91</b><br>γ 197; 12    | ε; β*; α 2,63<br>γ 550; 630;<br>611                 | r<br>y 328: 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8+ + + + 334<br>7,834 + 439                      | a 4,0+3300+<br>5900                                         | 17 90 141 15 122                                        |
| Sm 140                                                    | 557 y 768<br>Sm 141                                                                                                                                                             | 1805; g<br>Sm 142                                 | Y 1660; 878                                                     | Sm 144                                                                                                          | Sm 145                                                       | 678.<br>Sm 46                                     | Sm 147                                              | Sm 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sm 149                                           | Sm 150                                                      | Sm 151                                                  |
| 14,8 m                                                    | 22,6 m   10,2 m                                                                                                                                                                 | 72,4 m                                            | 65 s 8,83 m                                                     | 3,1                                                                                                             | 340 d                                                        | 1,03-10 <sup>8</sup> a                            | 15.0<br>1.06 · 10 <sup>11</sup> a                   | 11.3<br>7 · 10 <sup>15</sup> a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13,8                                             | 7,4                                                         | 93 a                                                    |
| β <sup>+</sup> 1,9<br>γ 226; 140                          | 5 <sup>+</sup> 2.9                                                                                                                                                              | ε<br>β <sup>+</sup> 1,0<br>γ (679)                | h 754<br>β*                                                     | a~07                                                                                                            | ε;γ61;(492)<br>e <sup>-</sup><br>α ~ 110                     | 02.5                                              | α 2,234<br>α 64                                     | α 1.96<br>σ 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o 41000                                          | o 102                                                       | β <sup>-</sup> 0,1<br>γ (22); e <sup>-</sup><br>σ 15000 |
| Pm 139                                                    | Pm 140                                                                                                                                                                          | Pm 141                                            | Pn 142                                                          | Pm 143                                                                                                          | Pm 144                                                       | P n 145                                           | Pm 146                                              | Pm 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pm 148                                           | Pm 149                                                      | Pm 150                                                  |
| 4,15 m<br>β <sup>+</sup> 3,0                              | 5,95 m 9,2 s<br>β* 3.2. β* 5.1.<br>γ 1028. γ774;                                                                                                                                | 20,9 m<br>β <sup>+</sup> 2,7<br>γ 1223: 886:      | 40,5 s                                                          | 265 d                                                                                                           | 1,0 a                                                        | 7,7 a                                             | 5,53 a<br>ε: β <sup>-</sup> 0.8<br>y 454 747<br>736 | 2,62 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41.3 d 5.37 d<br>p*0.4 p*2.5<br>1.0 + 550        | 53,1 h<br>β <sup>-</sup> 1.1.                               | 2,7 h<br>B-2.3; 3.4                                     |
| y 403; 463;<br>368<br>9                                   | β <sup>*</sup> 3.2. β <sup>*</sup> 5.1.<br><sup>1</sup> / <sub>7</sub> 1028. <sup>1</sup> / <sub>7</sub> 774;<br>774: 717,<br>420. 1499.                                        | 9 1223, 660,<br>194; 1346<br>9                    | 13,8                                                            | no β*<br>γ 742                                                                                                  | 47                                                           | 72; (67)                                          | 736.0 8400                                          | γ(121)<br>α85+96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * 500. 5465.<br>Fy(761)* 915.<br>o 22000 or 2000 | γ 286.<br>α 1400                                            | y 334; 1325;<br>1166                                    |
| Nd 138                                                    | Nd 139                                                                                                                                                                          | Nd 140<br>3.37 d                                  | Nd 141                                                          | Nd 142<br>27,13                                                                                                 | Nd 143                                                       | Nd 144<br>23,80                                   | Nd 145<br>8,30                                      | Nd 146<br>17,19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nd 147<br>10.98 d                                | Nd 148<br>5.76                                              | Nd 149<br>1,73 h                                        |
|                                                           | 5,5 h 29,7 m<br><sup>6</sup><br><sup>6</sup><br><sup>7</sup><br><sup>14</sup> ,73k <sup>6</sup><br><sup>8</sup><br><sup>8</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup> | 3,37 0                                            | 62 s 2,5 h<br>s 3 0,8<br>by 757 y 11127.                        | 27,15                                                                                                           |                                                              | 2,1·10 <sup>15</sup> a                            | 0,00                                                | 11.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (IT 0.8: 0.9                                     | 0,10                                                        | 6-1.4:1.6.                                              |
| γ 326; (200)<br>g                                         | 982,708 7405.<br>7/(231): e <sup>-</sup> 1074                                                                                                                                   | ε<br>πο γ                                         | р+<br>т (971) 1147)                                             | σ 18,7                                                                                                          | o 325<br>o <sub>n.o</sub> 0,0174                             | α 1,83<br>σ 3,6                                   | 0.42                                                | o 1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 791:531<br>e                                     | a 2,48                                                      | y 211; 114;<br>270                                      |
| Pr 137<br>76.6 m                                          | Pr 138                                                                                                                                                                          | Pr 139<br>4.5 h                                   | Pr 140<br>3,4 m                                                 | Pr 141<br>100                                                                                                   | Pr 142                                                       | Pr 143<br>13,57 d                                 | Pr 144<br>7,2 m 17.3 m                              | Pr 145<br>5,98 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pr 146<br>24,0 m                                 | Pr 147<br>13,6 m                                            | Pr 148                                                  |
| ε; β <sup>+</sup> 1,7                                     | See. atra                                                                                                                                                                       | ε; β <sup>+</sup> 1,1<br>γ(1347; 1631)            |                                                                 |                                                                                                                 | 16-2.2                                                       | β <sup>-</sup> 0.9<br>γ.(742)                     | ly 59<br>p                                          | IT-1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-4.1_                                           | β*2,1:2,7<br>y 315:641:                                     | 0 <sup></sup> 0 <sup></sup> 47;                         |
| γ 837; 434;<br>514; 160; g                                | 1038: (668;<br>303. 1551)                                                                                                                                                       | 9                                                 | ) β <sup>+</sup> 2,4<br>γ (1596)                                | 03,9+7,6                                                                                                        | by (4) 7 1576.<br>€ 0.20                                     | o 89                                              | 814_1 (2186_)                                       | y (748: 676)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y 454; 1525                                      | 578, 78                                                     | 451 302<br>698 - 1358                                   |
| Ce 136<br>0,19                                            | Ce 137<br>34,4 h 9,0 h                                                                                                                                                          | Ce 138<br>0,25                                    | Ce 139<br>56,5 s 137,6 d                                        | Ce 140<br>88,48                                                                                                 | Ce 141<br>32,50 d                                            | Ce 142<br>11,08                                   | Ce 143<br>33,0 h                                    | Ce 144<br>284,8 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ce 145<br>2.98 m                                 | Ce 146<br>13.5 m                                            | Ce 147<br>57 s                                          |
|                                                           | <sup>1</sup> η 254<br>«" β <sup>+</sup><br>« γ.447,<br>γ.(825; (437)                                                                                                            |                                                   |                                                                 |                                                                                                                 | β <sup>+</sup> 0,4; 0,6<br>γ 145                             |                                                   | β <sup>-</sup> 1.1; 1.4<br>γ 293; 57;<br>665; 722   | рто.з.,<br>т 134:80<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | β <sup>-</sup> 1,7; 2,1<br>γ724;63,1148,         | β <sup>+</sup> 0,8.<br>γ 317: 218;                          | β <sup>-</sup> 3,3<br>γ 269; 93; 580;                   |
| o 0.95+6.3<br>La 135                                      | V(825. (437)<br>169) e"<br>La 136                                                                                                                                               | 00.015+1.1                                        | 1754 7166<br>La 138                                             | ۵0.57<br>La 139                                                                                                 | La 140                                                       | σ0,95<br>La 141                                   | 6,0<br>La 142                                       | La 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 285:440<br>La 144                                | 265, 134<br>La 145                                          | 374<br>La 146                                           |
| 19,4 h                                                    | 9,9 m                                                                                                                                                                           | La 137<br>6 · 10 <sup>4</sup> a                   | 0,09                                                            | 99,91                                                                                                           | 40,272 h                                                     | 3,93 h                                            | 92,5 m                                              | 14,23 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40,9 s                                           | 24,8 s                                                      | 6,2 s 10 s                                              |
| ε; β <sup>+</sup><br>γ 481; (875;<br>588); g              | ε; β* 1,9<br>y 819; (761;<br>1323)                                                                                                                                              | ε<br>noγ<br>g                                     | 1,35 · 10 <sup>11</sup> a<br>ε;β <sup>-</sup> 0,3<br>γ 1436,789 | σ <b>9</b> ,0                                                                                                   | β <sup>-</sup> 1.4; 2;2<br>γ 1596; 487;<br>816; 329<br>σ 2,7 | β <sup>-</sup> 2,4<br>γ 1355                      | β <sup>+</sup> 2.1:4.5.<br>γ 641:2398:<br>2543.     | β <sup>-</sup> 3.3.<br>γ621; 644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | β <sup>+</sup> 4,1;4,4<br>γ 397:541:<br>845      | f <sup>-</sup> 4.0; 4.1<br>у 70; 356; 118;<br>170;447; 1819 | β <sup>+</sup> 6.9 y 259,<br>y 259; 410<br>925 503      |
| Ba 133                                                    | Ba 134                                                                                                                                                                          | Ba_135                                            | Ba 136                                                          | Ba 137                                                                                                          | Ba 138                                                       | Ba 139                                            | Ba 140                                              | Ba 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ba 142                                           | Ba 143                                                      | Ba 144                                                  |
| 38,9 h 10,5 a<br>ly 276;<br>12 r                          | 2,417                                                                                                                                                                           | 28,7 h 6,592                                      | 7,854                                                           | 2,55 m 11,23                                                                                                    | 71,70                                                        | 83,06 m                                           | 12,75 d<br>β <sup>-</sup> 1,0<br>χ 537; 30; 163;    | 18,3 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,7 m                                           | 14,5 s                                                      | 11,9 s                                                  |
| 12 ε<br>ε γ 356;<br>ε 81;<br>γ (633) 303                  | σ 0.158 + 1.8                                                                                                                                                                   | lγ 268<br>e σ 5.8                                 | σ 0,010+~0,4                                                    | ₩ 662 o 5,1                                                                                                     | σ 0.35                                                       | β <sup>-</sup> 2,4<br>γ 166; (1421)<br>σ 6        | γ 537; 30; 163;<br>305<br>σ 1,6                     | β <sup>+</sup> 2,8; 3,0<br>γ 190; 304;<br>277; 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | β <sup></sup> 1.0; 1.7<br>γ 255; 1204;<br>895    | β <sup></sup> 4,2<br>γ 211; 799;<br>980; 1011               | β <sup>-</sup> 2,4; 2,9<br>γ 104; 431;<br>388; 157; 173 |
| IL CONTRACTOR                                             |                                                                                                                                                                                 | LE SALE                                           |                                                                 | The second se | The Contract of the local division of the                    |                                                   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                             |                                                         |

Er 154 3,75 m Er 156 18,6 m

35; 30.

Er 157 ~ 25 m

β<sup>+</sup> γ 121; 391...

Ho 156

3 p-spallation ~1 GeV p / Ta

#### 2 Light particle induced reactions

# HI induced reactions

1

G.J.Beyer, J.Comor et al. Radiochimica Acta 90, 247-252 (2002)