- 1. Masters or Doctoral level study program or both?
- 2. Motivation for the study program creation
 - a. Preparation of professionals for particle accelerator related industry
 - b. Preparation of professionals for scientific institutions
 - c. Particle Physics community strengthening
- 3. Motivation for students to apply for the study program
 - a. Acquired knowledge/skills
 - b. Future prospects of the students
 - c. Possibility to have training/research at CERN
 - d. Possibility to have stipendium
 - e. Most of the master level students are working how that would affect application and mobility would there be interest at student mobility at all?
 - f. CERN lecturers possible attraction for the program motivation alongside with organizational questions
- 4. What would be the "ideal" program what should we teach, what skills should be acquired?
- 5. What are the competences/skills that cab be acquired right now survey of existing study courses, research thematic, individual researchers
- 6. From here the reason for mobility should arise (or vice versa).
- 7. The legal status of the program
 - a. Joint study program with appropriate funding
 - b. Realization of the joint program on bilateral agreements and mobility of students
 - c. Adaption of existing study program to suit the outcomes of the study.
- 8. Student application to the program
 - a. Students apply to one joint program at their "home" universities, and their applications are evaluated by joint application committee
 - b. Students apply to the study program at their "home" university and are informed and encouraged for mobility
 - c. How the process could be realized 80 Credit points in 4 semesters 20 of that for maters thesis preparation.
 - d. How many participants could be realizing the program?
- 9. The movement of the "student flows" or "lecturer flows" between the universities and countries?
 - a. Students move from one institution of to another spending a study semester there
 - b. Students study spending most of their time at their "home" institution and go for mobility to acquire knowledge available at partner universities
 - c. How the accommodation would be organized, how the expenses would be covered?
 - d. Lecturer mobility based mobility with either lecturer mobility for teaching or video conference learning based study process.

- 10. How the funding for the study program is provided and how the cash flows are distributed between participants
 - a. Expenses for the study program feasibility of the study program how many students should study for each case?
 - b. Sustainability of the study program
 - c. Students pay for the study. Non Baltic state student possible involvement. Government funding for talented students.
 - d. External funding for student studies from ministries or other sources depending on specific participant funding process
 - e. Distribution of funding for student education for different study courses at different institutions depending of the chosen model
- 11. Dedicated personnel for study program creation.

Table 1.

Subjects for Particle Physics and Accelerator Technology Masters level study program

Part A	Course	Credit points
1	Modern physics problems	2
2	Fundamentals of material science	3
3	Fundamentals of relativity and cosmology	2
4	Physical methods of natural sciences and technologies	3
5	Elementary Particle Standard Model	2
6	Accelerator Physics	2
7	Particle Accelerator Technology - Basic course	3
8	Particle Detectors	3
Part B	Course	
1	Nuclear Physics	4
2	Nuclear physics and elementary particles	4
3	Dosimetry	2
4	Processing of experimental data	10
5	Positron Emission Tomography - Computed Tomography (PET/CT) instrumentation	4
6	Particle Accelerator Technology - Advanced course	3
7	Production of Radioisotopes	3
8	Radioecology and environmental protection	2
9	High Vacuum Technologies	2
10	HV and RF technology	4

	RF cavity design	2
12	Legislation on radiation safety and nuclear safety	2
13	Radiochemistry and radiation chemistry	3
14	Physical control methods	2
15	Accelerator power sources	2
16	Magnets for accelerators	2
17	Beam instrumentation	2
18	Accelerators for industrial applications	2
19	Accelerators for medical applications	2
20	Medical Radiology	2
21	Course work	2
	Master's thesis	20
	Credit points	97