LIU hardware and beam commissioning: strategy

V. Kain, R. Alemany, F. Antoniou, G. Rumolo,
on behalf of the LIU Beam Commissioning Working Group

Acknowledgements: D. Jacquet for the Injector Settings Management Working Group

Chamonix 2018 Workshop, 29 January – 1 February, 2018
Pre-LS2 LHC injector complex and beams

NON-LHC facilities:
ISOLDE: the radioactive ion beam facility
East Area: secondary beam lines fed by PS protons on 2 targets
nTOF: pulsed neutron source
AD/ELENA: low energy antiprotons
AWAKE: proton driven plasma wake field acceleration
HiRadMat: high intensity /brightness to material test facility
North Area: secondary beam lines fed by SPS protons/ions on 3 targets. Multiturn extraction (MTE) beam.
Pre-LS2 LHC injector complex and beams - protons

<table>
<thead>
<tr>
<th>p^+ beam/facility</th>
<th>machine</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISOLDE</td>
<td>PSB</td>
<td>$I > 3.2 \times 10^{13}$ in 4 rings; critical: losses and steering in extraction region and to ISOLDE targets</td>
</tr>
<tr>
<td>MTE for North Area</td>
<td>PSB, PS, SPS</td>
<td>$I_{SPS} \leq 4 \times 10^{13}$; $h=2$ in PSB; critical: ε_V
Low intensity MTE required for alignment in PS and SPS and aperture measurements</td>
</tr>
<tr>
<td>LHC</td>
<td>PSB, PS, SPS</td>
<td>~ 15 variants; critical: ε, tails, losses; extractable to LHC, SPS
COAST,... Probe beam not commissioning beam in injectors</td>
</tr>
<tr>
<td>nTOF</td>
<td>PSB, PS</td>
<td>$I_{PSB} 8 \times 10^{12}$ from 1 PSB ring; or 3×10^{12} in parasitic operation</td>
</tr>
<tr>
<td>East</td>
<td>PSB, PS</td>
<td>6×10^{11} from 1 PSB ring</td>
</tr>
<tr>
<td>AD</td>
<td>PSB, PS</td>
<td>4.5×10^{12} from 4 rings</td>
</tr>
<tr>
<td>HiRadMat</td>
<td>SPS</td>
<td>Operation of facility with high intensity LHC beam. critical: ε,
High precision experiments</td>
</tr>
<tr>
<td>AWAKE</td>
<td>PSB, PS, SPS</td>
<td>$I_{SPS} \sim 3 \times 10^{11}$; $4 \sigma_t < 1$ ns, synchronised to AWAKE laser</td>
</tr>
</tbody>
</table>

RED = required at commissioning stage
Pre-LS2 LHC injector complex and beams

- Commissioning of all operational p^+ beam flavors in injector complex: 8 weeks (relying on settings of previous run and not including LN2)
 - LHCPROBE beam no injector commissioning beam
 - Injector commissioning: cannot be done with LHC beams only, FT beams required

- Single and multi-bunch ion beams for LHC and SPS fixed target commissioned parasitically to p^+ operation, day shifts: > 8 weeks

2018 schedule

<table>
<thead>
<tr>
<th>Wk</th>
<th>Mo</th>
<th>Tu</th>
<th>We</th>
<th>Th</th>
<th>Fr</th>
<th>Sa</th>
<th>Su</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>22</td>
<td>DSO test LN2</td>
<td>DSO test TT2</td>
<td>FSO test LN2</td>
<td>Close PSB, PS, TT2</td>
<td>HW tests, Cold Checkout & Re-commissioning with beam</td>
<td>Technical Stop (YETS)</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
<td>START LHC</td>
<td>DSO test PSB, PS</td>
<td>Beam to PSB</td>
<td>Close SPS</td>
<td>Beam to PSB</td>
<td>Beam to PSB</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>DSO test LN4</td>
<td>DSO test TT2</td>
<td>Close SPS</td>
<td>DSO test TT2/T12</td>
<td>Beam to PSB</td>
<td>Beam to SPS</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>DSO test PSB, PS</td>
<td>START LN4 RR</td>
<td>Beam to PSB</td>
<td>DSO test PSB - NA</td>
<td>Beam to PSB</td>
<td>Beam to PSB</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>START LN4 RR</td>
<td>Beam to PSB</td>
<td>Close ISOLODE</td>
<td>Beam to PSB</td>
<td>Beam to PSB</td>
<td>Beam to PSB</td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>Beam to AD</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>Beam to PSB</td>
</tr>
<tr>
<td>11</td>
<td>25</td>
<td>Beam to LEIR</td>
</tr>
<tr>
<td>12</td>
<td>26</td>
<td>Beam to LEIR</td>
</tr>
<tr>
<td>13</td>
<td>27</td>
<td>Beam to LEIR</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>Beam to LEIR</td>
</tr>
<tr>
<td>15</td>
<td>29</td>
<td>Beam to LEIR</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>Beam to LEIR</td>
</tr>
</tbody>
</table>

LHC high intensity available
LIU goals in a nutshell

- **LIU beam parameters**

<table>
<thead>
<tr>
<th>Protons</th>
<th>Bunch length</th>
<th>Bunch intensity</th>
<th>Normalized emittance</th>
<th>Number of bunches</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL 25 ns</td>
<td>1.65 ns</td>
<td>2.3×10^{11}</td>
<td>2.1 (\mu m)</td>
<td>288</td>
</tr>
<tr>
<td>BCMS LIU</td>
<td>1.65 ns</td>
<td>2×10^{11}</td>
<td>1.3 (\mu m)</td>
<td>$288 = 6 \times 48$</td>
</tr>
</tbody>
</table>

- **Pb\(^{82}\) and slip stacking**

<table>
<thead>
<tr>
<th>Bunch intensity (Pb/b)</th>
<th>Normalized emittance</th>
<th>Number of bunches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9×10^8</td>
<td>1.5 (\mu m)</td>
<td>14×4</td>
</tr>
</tbody>
</table>

- **Fixed target beams:** *restore the pre-LS2 performance*
Summary of main hardware upgrades for LIU

<table>
<thead>
<tr>
<th>Machine</th>
<th>Hardware upgrades*</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINACs</td>
<td>LINAC4 = 160 MeV normal conducting H⁻ LINAC</td>
</tr>
<tr>
<td>LEIR</td>
<td>new transfer line beam position monitors, beam dump, new orbit system</td>
</tr>
</tbody>
</table>
| PSB | • new H⁻ injection system at 160 MeV
 | • new beam instrumentation
 | • 2 GeV extraction energy → new main power supply
 | • new RF system
 | • upgraded transfer lines and extraction system |
| PS | • new 2 GeV injection system
 | • new beam instrumentation
 | • new internal dumps
 | • RF upgrade for reliability/maintainability and beam stability |
| SPS | • 200 MHz power upgrade and new LLRF
 | • new beam dump and protection devices
 | • AC coating and impedance reduction, aperture consolidation
 | • new beam instrumentation |

* Details of upgrades in machine specific talks of this session.
Rough timeline of post-LS2 beam commissioning

- **The first year of Run 3 (2021) will have to be fully devoted to**
 - The recovery of the pre-LS2 beams (protons) with LIU equipment, both for LHC and FT physics
 - The production of the Pb ion beams to the full LIU performance with slip stacking in SPS for the 2021 ion run

- **2022 should be devoted to accelerating 2e11 p/b injected in the SPS**
 - Already injected in 2017 with 70% of the target bunch intensity, brightness and train length
 - Still marginally stable in the PS and affected by instabilities in the SPS

- **Further intensity steps (additional 15% and 10%) to be made in 2023 and 2024**
 - These steps are unprecedented and will require dedicated scrubbing runs in the SPS and fine transverse and longitudinal optimisations
 - While high intensity is being commissioned, corrective actions compatible with YETS could be applied, if needed.

2020-21

- Commissioning of pre-LS2 beams with Linac4 and installed LIU equipment + commissioning of the LIU performance Pb ion beams with slip stacking in SPS

2022

- Commissioning of 1.8 10^{11} p/b with the desired brightness and loss budgets out of SPS

2023

- Commissioning of 2.1 10^{11} p/b up to SPS extraction and tests of higher intensity at least up to the SPS injection

2024

- Commissioning of 2.3 10^{11} p/b up to SPS extraction with the desired brightness and loss budgets
LIU commissioning program - what needs to be done?

- **Integrate new hardware**
 - New operational scenarios, higher level parameters
 - Define/prepare software, cover all interfaces (interlocks, timing, settings generation,...)
 - Define test procedures

- **Tools**
 - Next generation settings management in injectors: model based settings generation and correction
 - New timing system approach

- **Ensure readiness of plans and procedures for commissioning**

- **Establish teams and responsibilities**

- **Organize, execute, analyze dry runs/reliability runs/hardware commissioning, beam commissioning to deliver beam parameters according to predefined time line**
How will we do it?

→ LIU Beam Commissioning Working Group (BCWG)

First meeting 19 October 2017

https://indico.cern.ch/category/9633/

• A la LHC commissioning

• Members from operations, beam dynamics, equipment groups and controls

• Collaboration across all machines
 • To establish common strategy on how to commission beams
 • To ease preparing interfaces between machines (beams, equipment, signals)
 • Towards common philosophy on how to operate CERN's accelerators
 − Review current operational methods
 − Majority of lower energy machines does not rely on model based settings generation and correction
 − LHC ideas to injectors and develop them further

• Core team for strategy and separate teams for specific tasks
 • E.g. injector settings management working group
How will we do it? - BCWG in 2018

<table>
<thead>
<tr>
<th>2018 Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formalize beam commissioning with 2018 start-up</td>
</tr>
<tr>
<td>• Add beam commissioning to re-commissioning check lists</td>
</tr>
<tr>
<td>• Establish planning and time allocation of tests</td>
</tr>
<tr>
<td>• Review approach and procedures afterwards</td>
</tr>
<tr>
<td>• Take reference measurements</td>
</tr>
</tbody>
</table>

LEIR will already have all LIU upgrades

This will serve as template for after LS2

Tools:

• Launch injector **settings management** working group

• Establish prioritized list of tools to be prepared/upgraded for after LS2 per machine; define resources and deadlines

• Develop further **online beam parameter (and performance) analysis and tracking**

• Prepare list of methods/algorithms to test during 2018 run

How to commission main new LIU systems in the different machines?

• Define beams, entry conditions, infrastructure, test procedures, tools

• Include new systems in beam commissioning check lists
Ongoing activities (1)

- **Online beam commissioning check list and planning tool**
 - To define checks with procedures, track progress and plan the hardware and beam commissioning period

Example:
Check lists 2017 in the SPS
Ongoing activities (1)

- **Online beam commissioning check list and planning tool**
 - To define checks with procedures, track progress and plan the hardware and beam commissioning period

Example:
Check lists 2017 in the SPS
Ongoing activities (1)

- **Online beam commissioning check list and planning tool**

<table>
<thead>
<tr>
<th>Initial Aperture Scan</th>
<th>100%</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Orbit</th>
<th>83%</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Time in BPMS for first turn FT</th>
<th>Time in BPMS for LHC</th>
<th>Good signal on max number BPMS</th>
<th>Kick response for gain</th>
<th>Beam based alignment, 2 optics</th>
<th>Beam dump pattern check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
</tbody>
</table>
Ongoing activities (1)

- **Online beam commissioning tool**
 - beam based alignment, 2 optics

- calibrate BPMs
- make sure that the gates are set correctly for FT on the first island
- do short kick response with single kicks 90 deg apart, check whether all BPMs follow. Compare the oscillation in difference what you should expect (pink line on YASP display e.g. in H: Last predicted H correction DIFFERENCE to DV Ref)
- SFT 5000 ms
- LHC25ns: at flattop

prepare data directory in sps/steering directory: e.g. alignment2017

The actual correction:
- Take multiple acquisitions. Save the average in File>Save/Read data files... (not only on the multiple acquisition window)
- start Yasp with configuration: 'double optics setup'
- under "Machine Specials": choose "Multiple Twiss Selection"
- choose the optics for beam 1 and beam 2: do not forget to press "load" afterwards
- under "Machine Specials": choose multiple Twiss data. open the files for the different beams
- under "status control": go to "scaling": scale e.g. QE2 BPMs H and V by 1.2466 (even though the ks of H and V are not completely the same)
- check whether the old alignment from the year before does not create closed bumps with the new corrections.
- Check also log book entry of Tuesday 15th of March 2016 afternoon shift.
History of orbit tested for beam based alignment, 2 optics.

VKAIN 13:53

Quadrupoles moved:

H: QF.32410 (0.37 mm) QF.51010 (-0.59 mm)
V: QD.20710 (0.48 mm) QD.30110 (0.55 mm)

FT beam RMS improvement:

H: 2.45 mm -> 1.78 mm
V: 2.77 mm -> 1.93 mm

LHC beam RMS improvement:

H: 3.5 mm -> 2.2 mm
V: 2.9 mm -> 1.7 mm
Ongoing activities (2) – LINAC4 and PSB injection system

• LINAC4 commissioned to 160 MeV with H⁻ on main dump
 • RF hardware and software commissioning still ongoing
 • Reliably achieved current: 23 mA peak (goal: 40 mA)
 • Emittance, energy, energy spread within specification
 • Availability of 90.6% of beam on dump achieved

• Highlight 2017: Half sector test (10/2016-4/2017) – test ½ PSB injection chicane of one ring in LINAC4 transfer line:
 • Understand and learn to operate PSB injection equipment
 • Stripping foil test stand: evaluation of lifetime and foil changing mechanism and foil diagnostics
 • Stripping efficiency > 99%

• Next milestones for LN4 operation:
 • Prepare LN4 for PSB injection; transition to operation to be completed
 – Debuncher cavity, RF feedforward to be commissioned
 – Improve beam quality out of LN4: current, pulse shape
 – Address operational issues: flexible operation with RF feedforward, interlocking
 • Finish remaining software tools: emittance measurement,…
 – Responsibility of software for source control to be clarified.
Ongoing activities (3)

• LIU hardware already installed/ being commissioned:
 • LEIR: new transfer line BPMs
 • PSB: main dump installed, turn-by-turn trajectory, Finemet cavity reliability run, prototype wirescanner, new amplifiers for transverse feedback,…
 • PS: most RF upgrades in place, new beam gas ionization profile monitor, wire scanner
 • SPS: first AC coated magnets and impedance reduction, new fast beam current intensity monitor, extraction kicker impedance reduction

• Upgraded operational methods:
 • LEIR model based operation for ring and transfer lines
 • Optics checks as part of standard start-up for PSB and PS: kick response, k-modulation
 • Combined 4 ring PSB 2 PS steering algorithm
 • Higher level tune and chromaticity parameters and correction tools for the PS
 • 2 x 40 MHz for bunch rotation in PS to reduce capture losses at SPS injection point
 • Improved tune function commissioning for high intensity LHC cycles with new tools from power controls and transverse damper in SPS
 • …
Ongoing activities (4)

Injector settings management working group

Chairperson: D. Jacquet

• 3 main objectives
 • Model based generation and high level parameters for low energy machines
 • Homogenization of controls across accelerators
 • Collaboration to define next generation settings management for injectors
 – Specific requirements for ppm machines: e.g. super settings,…

• All CERN machines participate
 • And (almost) all machines agree to change

• 2 day workshop 10-11 January 2018
 • Concrete short term and longer term tasks decided
 • Manpower identified, but not committed
BCWG during LS2

2019
- Extend hardware commissioning check lists for LIU equipment, including special tests
- **Define LS2 dry runs and HWC, including planning of tests with shutdown coordination**
- Implement new settings management, optics, methods
- Further work on commissioning procedures

2020
- Finalize tools
- Establish the detailed **commissioning plan for LHC and FT beams***
 "Rough" commissioning with LHC beam only, detailed setting up needs LHC AND FT beams
- Coordinate/execute LS2 dry runs, HWC and check-out
- **Follow-up on beam commissioning** progress

The LIU beam commissioning will cover the commissioning of all injector beam types. Certain commissioning methods require FT beams. The same manpower is involved.
Long Shutdown 2

Master Schedule of the Long Shutdown 2 (2019-2020)
Key dates LS2

- **First proton beam**
 - LHCProbe beam to the LHC: 4 March 2021
 - First beam to the SPS 18/1/2021. 6 weeks of stand alone commissioning
 - First beam to the PS 23/11/2020. 6 weeks of stand alone commissioning
 - First beam to the PSB 14/9/2020. 2.5 months of stand alone commissioning
 - LINAC4: beam to LBE mid 2019, beam re-commissioning start: 6/4/2020

- **Hardware commissioning and check-out:**
 - Several months of hardware commissioning and check-out by operations team foreseen in schedule per machine after individual system tests by equipment owners.

- **We will add**
 - Final date for delivery of FESA APIs
 - Required availability for controls, timing,…
 - Dry runs during shutdown period
 - Fixed target beam and ion key dates

- **Commissioning plan for post-LS2 still to be defined.**
 - First extrapolations from present experience: Time allocated in schedule provides sufficient margin, provided appropriate testing before beam
Risks for schedule

• LIU beams in LIU machines will be new territory

Risks for schedule:

• The LIU ion run in 2021 means an additional complication
 • Commission slip stacking
 • Deliver HL-LHC ion parameters

• LIU equipment and beam production schemes:
 • Hardware installation: time, manpower, budget allocated
 • Operation: requirements for software being finalised in 2018/LS2

• To deliver the software for LIU in time need
 • Support from the equipment groups for collaboration and readiness of FESA layer
 • Support from CO
 • …enough available manpower in OP (/ABP)
 • deadlines and manpower requirements are being prepared
 - 2018 goal for BCWG
Conclusions

- LIU equipment is either in construction, partly installed or some of it already commissioned.

- The LIU beam commissioning working group (BCWG) is preparing the next phase with the goal:
 - to efficiently commission the new injector chain
 - to use standardized procedures across machines

- Leveraging from the experience of LHC commissioning, BCWG will cover:
 - Operational methods and beam dynamics
 - Tools
 - Testing procedures, planning and definition of deliverables
 - Establishing and deploying the teams

- BCWG is preparing a roadmap to achieve the LIU goals: detailed breakdown and milestones due at the end of this year.
 - Commissioning of fixed target beams is part of LIU commissioning to be added
 - Software requirements and manpower allocation to be addressed with high priority
THANK YOU FOR YOUR ATTENTION!

LHC Injectors Upgrade
Experience from start-up after LS1

• Example of the PSB after LS1: new digital LLRF, upgraded beam instrumentation, mainly controls changes

Setup with beam

• First beam in the machine rapidly
 • Monday 2nd June first beam injected into the Bl line around lunchtime
 • First beam (1 turn; 40E10) injected in R3, lost after 5 ms
 • In the afternoon small intensity accelerated in all 4 rings
 • Tuesday optimising injection, debugging instrumentation, RF setting-up
 • Wednesday ejection to the new dump

• First beam sent to the PS 17th June (3 days earlier than in planning)

• 2.5 months after first beam, we were still not at nominal performance (ISOGPS 2600E10ppp; should be ~3200E10ppp).

Re-commissioning work group 16/4/2015