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1 Introduction

2 The forward–backward asymmetry

2.1 Conventions and leading-order predictions

The forward–backward asymmetry AFB in di-lepton production at the LHC is defined as follows,

AFB =
dσF − dσB

dσF + dσB
. (1)

Here dσF(dσB) denotes the cross section for forward (backward) events defined by cos θ > 0(< 0),
where

cos θ =
|p3ℓ+ℓ−|
p3ℓ+ℓ−

2

Mℓ+ℓ−

√

M2
ℓ+ℓ− + p2T,ℓ+ℓ−

(

p+ℓ−p
−

ℓ+ − p−ℓ−p
+
ℓ+

)

(2)

is the cosine of the scattering angle in the Collins–Soper frame, with

p± =
1√
2

(

p0 ± p3
)

, (3)

where p0 is the energy, p3 the longitudinal component, and pT the modulus of the transverse
component of a four-momentum vector pµ. The momentum of the ℓ+ℓ− system is denoted pµℓ+ℓ− =
pµℓ+ + pµℓ−, and M2

ℓ+ℓ− = p2ℓ+ℓ− is its squared invariant mass.
The parton-level differential cross section to charged-lepton-pair production via photon and

Z-boson exchange in quark–antiquark annihilation (ℓ = e, µ)

q(pq) + q̄(pq̄) → γ,Z → ℓ+(pℓ+) + ℓ−(pℓ−)

can be written at LO as follows,

dσ̂
(0)
qq̄ = dP2f

1

12

∑

pol

|M0
γ +M0

Z|2(ŝ, t̂) , (4)
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where
∑

pol denotes the summation over the spin degrees of freedom of the initial and final state
fermions and dP2f is the two-particle phase-space element. The factor 1/12 results from averaging
over the quark (spin and color) degrees of freedom. The matrix elements M0

γ and M0
Z describe

the photon and Z-boson exchange processes, respectively, at lowest order in perturbation theory.
In terms of the kinematical variables of the partonic system

ŝ = (pq + pq̄)
2, t̂ = (pq − pℓ+)

2, û = (pq − pℓ−)
2, (5)

the various contributions to the Born matrix elements squared for massless external fermions read

∑

pol

|M0
γ|2 = 8 (4πα)2Q2

q Q
2
ℓ

(t̂2 + û2)

ŝ2
,

∑

pol

|M0
Z|2 = 8 (4πα)2

[

(v2q + a2q)(v
2
ℓ + a2ℓ)(t̂

2 + û2)− 4vqaqvℓaℓ (t̂
2 − û2)

] |χ(ŝ)|2
ŝ2

,

∑

pol

2Re(M0
ZM0∗

γ ) = 16 (4πα)2Qq Qℓ aq aℓ
[

vqvℓ(t̂
2 + û2)− aqaℓ(t̂

2 − û2)
] Re[χ(ŝ)]

ŝ2
, (6)

with vf and af parametrizing the Zff̄ (f = ℓ, q) couplings,

vf =
1

2sWcW
(I3f − 2s2

W
Qf), af =

I3f
2sWcW

. (7)

Here Qf and I3f = ±1/2 denote the charge and third component of the isospin quantum numbers of
the fermion, respectively, and sW ≡ sin θW, cW ≡ cos θW with θW being the weak mixing angle. At
LO, the electromagnetic coupling α can be set to any appropriate value, such as the fine-structure
constant α(0), the running coupling α(MZ) at the Z pole, or the value αGµ

derived from the Fermi
constant Gµ (“Gµ scheme”).

The Z resonance can be either parameterized by an s-dependent or a constant width (see
Refs. [1, 2] for a discussion). We suggest to use the constant width approach,

χ(ŝ) =
ŝ

ŝ−M2
Z + iMZΓZ

, (8)

which identifies the complex mass squared µ2
Z = M2

Z − iMZΓZ with the (gauge-invariant) location
of the pole in the Z propagator. Note, however, that these “pole definitions” of mass and width of
the W/Z bosons, MW/Z and ΓW/Z, differ from the “on-shell (OS) definitions”, as typically quoted
by the LEP, Tevatron, and LHC collaborations, as follows

MV = MOS
V /

√

1 + (ΓOS
V /MOS

V )2, ΓV = ΓOS
V /

√

1 + (ΓOS
V /MOS

V )2, V = W,Z. (9)

This difference formally matters at the two-loop level, but is numerically relevant in precision
analyses, as MOS

V differs from MV by about 28MeV and 34MeV for W and Z bosons, respectively.
The OS quantities MOS

V and ΓOS
V naturally appear in the parametrization of the V propagator by

a running width.
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2.2 Corrections at NLO and beyond

The NLO cross section receives QCD corrections of O(αs) and electroweak corrections of O(α).
The electroweak O(α) corrections to neutral-current Drell–Yan processes naturally further de-
compose into QED and weak contributions, which individually build gauge-invariant subsets, and
thus can be discussed separately. The observable pp cross section at NLO (with incoming proton
momenta P1,2) is obtained by convoluting the partonic cross section with the parton distribution
functions fi(xk, µ

2
F) (p1 = x1P1, p2 = x2P2),

dσNLO(P1, P2) =
∫ 1

0
dx1dx2

∑

i,j

fi(x1, µ
2
F) fj(x2, µ

2
F)

×
[

dσ̂
(0)
ij (p1, p2) (1 + δij,weak) + dσ̂

(1)
ij,QED(p1, p2, µ

2
F) + dσ̂

(1)
ij,QCD(p1, p2, µ

2
F)
]

, (10)

where the sum
∑

i,j runs over all relevant parton configurations in the initial state and µF is
the factorization scale, which is conveniently set to MZ fopr physics near the Z pole. Here dσ̂(0)

comprises the contribution of the ij parton configuration to the LO cross section, and δij,weak is
the corresponding weak correction at NLO, which has the same kinematical dependence as the LO
part. The NLO cross-section contributions induced by QED and QCD corrections are denoted as
dσ̂

(1)
ij,QED and dσ̂

(1)
ij,QCD, respectively, including both virtual and real emission contributions. Note

that those parts explicitly depend on the factorization scale because of the PDF redefinition to
absorb collinear initial-state singularities.

In detail, QED corrections comprise all contributions from photon exchange in loops between
charged fermions or real photon emission off charged fermions, but not closed fermion loops in the
photon propagator or loops with photons coupling to W bosons. Note that, in principle, there is
a LO contribution from γγ collision as well, which should be counted as QED-like, but near the
Z pole this part is negligibly small.

At LO, the above parametrization of the amplitude does not suffer from any problems with
gauge invariance, but this statement deserves careful arguments. Gauge invariance dictates that
the weak mixing angle θW and the gauge-boson masses MZ and MW are not independent pa-
rameters; in strict fixed-order calculations the relation cW = MW/MZ is enforced. The above
parametrization of the matrix element, however, goes beyond a pure lowest-order calculation, be-
cause the finite-width term in the propagator χ(ŝ) results from a partial Dyson summation. This
does not pose a problem with gauge invariance, since the W-boson mass MW does not enter the
LO prediction explicitly and the Z-boson mass only enters in the combination µ2

Z = M2
Z − iMZΓZ.

The above parametrization, thus, effectively uses cW and µZ as free parameters with a dependent
W-boson mass µW = cWµZ, which does not enter the calculation directly.

The maintenance of gauge invariance becomes non-trivial after including electroweak correc-
tions. Possible solutions are provided by the “complex-mass scheme” [3], the “pole scheme” [4],
or by truncated expansions about resonances poles, where the validity of the latter “leading pole
approximation” is restricted to window of the size of some ΓV around the resonance at MV . More
details on the application of these schemes and explicit results can be found in Refs. [7, 8].

Beyond NLO, QCD corrections are known to fixed NNLO and beyond in terms of resummations
of leading contributions [?]. Photonic (QED) and weak corrections to the full Drell–Yan process
are only known to NLO [6, 7, ?]. However, the dominant QED contributions, which are due to
multi-photon final-state radiation, can be included in higher orders via parton showers [?] or QED
structure functions [7, ?]. Weak corrections beyond NLO are only known directly on resonance or
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in the high-energy region [?], where the latter is not relevant for Z-boson physics at the Z pole.
Mixed QCD–EW corrections were worked out in the resonance region as well [8, 10], revealing that
the dominant contributions can be accounted for by QCD precictions dressed by QED corrections
based on parton showers or QED structure functions. In summary, a state-of-the-art cross-section
contribution can be schematically written as

σ(P1, P2) =
∫ 1

0
dx1dx2

∑

i,j

fi(x1, µ
2
F) fj(x2, µ

2
F)
∫ ∫

RQED⊗RQCD⊗dσ̂
(0)
ij (p1, p2) (1+δij,weak), (11)

where the convolution with the QED and QCD correction factors RQED and RQCD is indicated
only in a sketchy way. In detail, those convolutions carefully have to retain full NLO accuracy
while catching higher-order effects without double-counting or the creation of artifacts.

2.3 Weak corrections, effective couplings, and improved Born approx-

imation

The NLO differential partonic cross section including weak O(α) corrections is of the following
form [5, 6],

dσ̂
(1)
ij,weak(p1, p2) = δij,weak dσ̂

(0)
ij (p1, p2)

= dσ̂self
ij,weak(ŝ, t̂) + dσ̂vert

ij,weak(ŝ, t̂) + dσ̂box
ij,weak(ŝ, t̂). (12)

The self-energy contributions dσ̂ij,self
weak are induced by the transverse parts of the γγ, γZ, and ZZ

self-energies in the s-channel. Note that in the “complete on-shell renormalization scheme”, as
formulated in [9] (or in its complex version [3]), the γZ and ZZ self-energies are renormalized
in such a way that no resonant contribution to the one-loop corrected amplitude remains at
the Z pole. Since the γγ self-energy contribution is not resonant at ŝ = M2

Z, there remains no
resonant self-energy contribution at the Z pole in the on-shell renormalization scheme. Likewise,
the contribution dσ̂box

ij,weak, which comprises box diagrams with internal WW or ZZ pairs, is non-
resonant.

This leaves the contribution dσ̂vert
ij,weak of the vertex corrections as the only source for weak

corrections that are not suppressed on resonance. More precisely, only vertex corrections to the
Zf f̄ vertices lead to resonant contributions, while γff̄ vertex corrections remain non-resonant. For
on-shell external fermions and Z bosons of virtuality q2 the weak corrections to the Zf f̄ vertices
can be described by (renormalized) formfactors F̂ σ

Zff,weak(q
2) which effectively correct the vector

and axial-vector couplings, vf and af , introduced above. Note, however, that these formfactors
are only gauge invariant for on-shell Z bosons, i.e. for q2 = M2

Z. On the Z pole, the Zf f̄ vertex
correction to the amplitude can, thus, be written as

Mvert
ij,weak = M0

Z

∣

∣

∣

vq→ḡV,q, aq→ḡA,q

+ M0
Z

∣

∣

∣

vℓ→ḡV,ℓ, aℓ→ḡA,ℓ

(13)

with the corrected (“effective”) vector and axial-vector couplings

ḡV,f = vf
(

1 + F̂V
Zff,weak(M

2
Z)
)

,

ḡA,f = af
(

1 + F̂A
Zff,weak(M

2
Z)
)

. (14)
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Explicit results on the formfactors can, e.g., be found in Refs. [7, ?].1 At NLO, the weak corrections
near the Z resonance can, thus, be included by the following modification of the LO cross section,

dσ̂
(0)
ij → dσ̂IBA

ij,weak ≡ dσ̂
(0)
ij

∣

∣

∣

vf→ḡV,f , af→ḡA,f

, (15)

which means that all (quark and lepton) LO couplings vf and af to the Z boson are replaced by
the effective couplings ḡV,f and ḡA,f , respectively. Note that the values of the effective couplings
depend on the chosen input scheme for the electromagnetic coupling constant α. We recommend
to take the “Gµ scheme” where α = αGµ

, which absorbs universal corrections from the running of
α from α(0) to α(MZ) as well as some leading corrections from the ρ parameter into the coupling
factors (see, e.g., Ref. [7] for details).

In the IBA, the Z width is either considered to be an input parameter as well, set to the mea-
sured value, or calculated in terms of the effective couplings to include the NLO weak corrections
and dressed by further QED and QCD corrections.

The IBA for the weak corrections can be dressed with QED and QCD corrections rather easily.
To this end, it is only necessary to replace the LO cross section dσ̂

(0)
ij in a combined QCD×QED

prediction by dσ̂IBA
ij,weak, which depends on the same kinematical variables as its LO counterpart.

The schematic cross-section prediction (11), thus, turns into

σIBA(P1, P2) =
∫ 1

0
dx1dx2

∑

i,j

fi(x1, µ
2
F) fj(x2, µ

2
F)
∫ ∫

RQED ⊗RQCD ⊗ dσ̂IBA
ij,weak(p1, p2). (16)

Note that this IBA description far away from the Z pole becomes insufficient for two reasons:
The effective couplings are not static, but are functions of ŝ, and the non-resonant weak corrections
(e.g. from photon exchange or box graphs) are no longer negligible, but increase strongly with the
energy and hence contribute sizeably at high invariant masses of the lepton pair. Moreover, we
recall that effective couplings simply based on off-shell formfactors would not be gauge invariant
(and thus not useful in phenomenology). The validity of the IBA should, thus, be carefully
validated, i.e. the dependence of its approximative quality on the size of the neighbourhood of the
Z resonance should be carefully investigated.

In summary, the IBA can be characterized by employing the pole approximation for the weak
corrections, while taking QCD and QED corrections with the full off-shell kinematics.

2.4 Effective weak mixing angle

The effective weak mixing angle for a generic fermion f , quantified by s̄2eff ,f , is related to the ratio
of vector to axial-vector effective couplings as follows,

s̄2eff ,f =
1

4|Qf |

(

1− ReḡV,f

ReḡA,f

)

. (17)

While the absolute size of the effective couplings depends rather sensitively on the fermion flavour
f , the value of s̄2eff ,f is quite robust against the change of the defining flavour. In fact, at NLO the

1In Ref. [7], the formfactors actually are given in the chirality basis as F±

Zff,weak
, which translate into the v−aγ5

basis according to FV = [(v − a)F+ + (v + a)F−]/(2v) and FA = [(v + a)F− − (v − a)F+]/(2a). Following the
conventions of Ref. [9], the sign of sW in Ref. [7] differs from the one of this work, but this difference drops out in
F±, which depends only on s2

W
.
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difference in s̄2eff ,f taken between different flavours f 6= b, t, where the masses of f and its weak
isospin partner are negligible, is due to one-loop diagrams with Zf f̄ or Wf f̄ ′ couplings only, but
not dependent on graphs with non-Abelian γWW/ZWW interactions or Higgs-boson exchange.
For f = b, there are additional contributions involving the top-quark mass mt, which also arise
from the vertex correction with ZWW interaction. Explicitly the difference to the leptonic effective
weak mixing angle reads at NLO:

[

s̄2eff ,f − s̄2eff ,ℓ
]

NLO
=

αs2
W
|Qf ′|
8π

[

11− 4s2
W
+ 4(2− s2

W
)2
(

π2

6
− Re

{

Li2
(

1 + c−2
W

)}

)

+ 4(5− 2s2
W
) ln(cW)

]

(18)

+
αs2

W

16πc2
W

[

3|Qf ′ | − 4(1−Q2
f)s

2
W

]

(

11− 4π2

3

)

, f 6= b,

[

s̄2eff ,b − s̄2eff ,ℓ
]

NLO
=

[

s̄2eff ,d − s̄2eff ,ℓ
]

NLO
+ (some longer expression for mt-dependence), (19)

where f ′ is the weak-isospin partner to fermion f , and Qf,f ′ the respective electric charges in
units of the elementary charge e. For illustration we recite here some rough numbers on those
differences:

νℓ u d b

(s̄2eff ,f − s̄2eff,ℓ)/10
−4 −3.6... −1.0... −2.2... ...

(20)

Note that LEP and SLC have measured s̄2eff ,ℓ to an accuracy of 2.9× 10−4 and 2.6× 10−4, respec-
tively, i.e. the flavour differences in s̄2eff ,b are of the typical order of existing measurements.

2.5 Issues in extracting s̄2eff,ℓ from AFB

• How well do the available higher-order calculations agree?

Perform a tuned comparison of predictions for AFB(Mll) at NLO EW, NLO QCD, NLO+PS
accuracy.

• How well does the IBA describe the weak corrections to AFB(Mℓℓ) in the resonance region
where s̄2eff,ℓ is extracted?

• What is the actual fit procedure in a “template fit” of the IBA to data?

– Take the leptonic s̄2eff ,ℓ as free parameter in the IBA, but the differences to s̄2eff ,f with
f 6= ℓ from theory?

– How are the normalizations of the effective couplings ḡV,f and ḡA,f , which depend on f ,
treated in the fit? Use three global normalization parameters for the partonic channels
qq̄ → ℓ+ℓ− with q = u, d, b?

– How are imaginary parts in ḡV,f , ḡA,f treated in the fit? Treat ḡV,f , ḡA,f as complex
quantities in the above formulas (some should be changed!).

– Is the Z width ΓZ, expressed in terms of ḡV,f , ḡA,f and treated as a fit parameter, or is
it taken from the LEP measurement? In the former case, this would have an impact
on the previous question of normalization.
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• Is the IBA introducing a systematic bias in fit results for s̄2eff,f?

Fit IBA to SM state-of-the-art predictions and compare fit result on s̄2eff ,f with known SM
prediction for given input. Extract systematic shifts in s̄2eff,f induced by the IBA and correct
fit result by it (including some conservative error).

• How are closure tests of the EW SM done including higher-order corrections?

Take predictions of AFB at different levels of sophistication and perform template fits for
different values of s̄2eff ,ℓ to determine the impact of higher-order corrections in terms of shifts
in s̄2eff,ℓ.
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