Update on W/Z Ratio in Geneva.

Frank Tackmann

Deutsches Elektronen-Synchrotron

EWWG Meeting CERN, June 20, 2018

[work in collaboration with Simone Alioli and Christian Bauer]

MC Generators in a Nut Shell.

Frank Tackmann (DESY)

Partonic Calculation.

NNLO₀

• Emissions above (below) $\mathcal{T}_0^{\text{cut}}$ are resolved (unresolved)

- Partons represent sum over any number of unresolved emissions
- Want to lower $\mathcal{T}_0^{\mathrm{cut}}$ to resolve more with partonic calculation
- (N)LO+PS merging patches together different (N)LO calculations
- NNLO+PS matching: Contains NLO₁ down to small \mathcal{T}_0
 - POWHEG NNLOPS: use MINLO' to extend POWHEG NLO₁ to small T₀^{cut}
 - GENEVA: use 0-jettiness subtractions and higher-order resummation

< 67 →

Parton Shower.

Parton shower fills in emissions below $\mathcal{T}_N^{\mathrm{cut}}$

- Provides unresolved emissions that have been integrated over and projected onto partons in partonic calculation
 - Highest partonic multiplicity is showered inclusively (corresponding to $T_2^{\text{cut}} = \infty$ here)
- MPI is done entirely by shower MCs
 - Currently not included in any partonic calculation
 - Would require to include double-parton scattering

Settings for W and Z.

Perturbative

- NNLL'+NNLO₀ for \mathcal{T}_0
- NLL+NLO₁ for \mathcal{T}_1
- GENEVA bands are from profile scale variations in \mathcal{T}_0 resummation (only)
 - Each scale variation treated as correlated between W and Z in their ratio
 - ► For illustration/information only, not the final word on uncertainty
- $lpha_s(m_Z)$ and PDFs (in partonic resummed calculation)
 - NNPDF3.1 NNLO, $lpha_s(m_Z)=0.114$
 - NNPDF3.1 NNLO, $lpha_s(m_Z)=0.118$
 - CT14 NNLO, $lpha_s(m_Z)=0.118$

Pythia8

- Tune 18 (CMS UE tune on top of Monash 2013)
 - primordial (nonperturbative) k_T lowered to 0.5
 - primordial (nonperturbative) k_T at tune value of 1.8
- Compare to plain Pythia8 with AZ tune as proxy
 - $\blacktriangleright\,$ Equivalent to what was used in analogous plots in ATLAS m_W paper

< A >

α_s Dependence.

- Agreement within 5-10% (as good as can be expected at this pert. precision)
- Including higher-order resummation, data prefers lower $lpha_s(m_Z)$
 - Consistent with what is observed in resummed e⁺e⁻ event shapes
 - In contrast to plain Pythia8 AZ, which has much larger α_s in shower

α_s Dependence.

- Agreement within 5-10% (as good as can be expected at this pert. precision)
- Including higher-order resummation, data prefers lower $\alpha_s(m_Z)$
 - Consistent with what is observed in resummed e⁺e⁻ event shapes
 - In contrast to plain Pythia8 AZ, which has much larger α_s in shower
- Largely drops out in ratio (as expected)
 - Slope with lower α_s(m_Z) slightly closer to Pythia8 AZ

Frank Tackmann (DESY)

Update on W/Z Ratio in Geneva.

α_s Dependence.

- Agreement within 5-10% (as good as can be expected at this pert. precision)
- Including higher-order resummation, data prefers lower $\alpha_s(m_Z)$
 - Consistent with what is observed in resummed e⁺e⁻ event shapes
 - In contrast to plain Pythia8 AZ, which has much larger α_s in shower

Primordial k_T Dependence.

- Sizeable impact at small p_T
- Cancels out in ratio (as expected)
 - However cannot be the full story, since a priori could also be flavor dependent, which is then less likely to cancel

Frank Tackmann (DESY)

Update on W/Z Ratio in Geneva.

Primordial k_T Dependence.

- Sizeable impact at small p_T
- Cancels out in ratio (as expected)
 - However cannot be the full story, since a priori could also be flavor dependent, which is then less likely to cancel

Frank Tackmann (DESY)

Update on W/Z Ratio in Geneva.

PDF Dependence.

Normalized p_T distribution of Z

- Essentially no effect on (normalized) p_T spectrum (as expected)
 - Also the case for MMHT2014 (not shown)
 - Except at very small p_T , which is also expected since PDF is effectively evaluated at $\mu \simeq p_T$

PDF Dependence.

- Essentially no effect on (normalized) p_T spectrum (as expected)
 - Also the case for MMHT2014 (not shown)
 - Except at very small p_T , which is also expected since PDF is effectively evaluated at $\mu \simeq p_T$

Immediate Future

- v1.0-rc3 imminent (improvements under the hood, bugfixes, more user-friendly running)
- W production will be available publicly in v1.0

Further plans

- Further improve underlying perturbative description
- Proper Pythia8 tune for Geneva+Pythia8
- Possibly QED/EWK corrections (at least "easy-to-include" ones, depending on demand)

< 67 →

Backup Slides

< 67 >

GENEVA Uses N-Jettiness as Resolution Variable.

• RGE resums logarithms of ratios of scales $\ln^n(\mu_B^2/\mu_H^2), \quad \ln^n(\mu_S^2/\mu_B^2), \quad \ln^n(\mu_S/\mu_H)$

• Logarithms $\ln^n(\mathcal{T}_0/Q)$ are resummed by canonical scale choices

$$\mu_H = Q, \qquad \mu_B = \sqrt{\mathcal{T}_0 Q}, \qquad \mu_S = \mathcal{T}_0$$

Resummation is turned off by taking

$$\mu_{\mathbf{S}} = \mu_{B} = \mu_{H} = \mu_{\mathrm{FO}} = Q$$

Uncertainties are estimated by using profile scale variations

Update on W/Z Ratio in Geneva