
1

FORM
reFORM

reFORM: designing a new symbolic manipulation
toolkit

Ben Ruijl

ETH Zurich

Mar 14, 2019

Ben Ruijl (benruyl@gmail.com) reFORM

2

FORM
reFORM

Symbolic manipulation
The good, the bad, and the ugly

Computer algebra and HEP

Symbolic manipulation is an important part of HEP:

Schoonschip [Veltman ’63]

FORM [Vermaseren ’89]

FORM 4.2.1 [Ueda, Vermaseren, BR ’17] [Takahiro’s talk]

Computations with billions of terms:

Five-loop beta function [Chetyrkin, Baikov, Kühn, Herzog, Vermaseren,

Vogt, Ueda, BR, Schröder, Maier, Luthe, Marquard,. . .]

Four-loop and five-loop splitting functions [Vermaseren, Vogt,

Ueda, BR]

Ben Ruijl (benruyl@gmail.com) reFORM

3

FORM
reFORM

Symbolic manipulation
The good, the bad, and the ugly

Computational blow-up

Troublesome five loop diagram:

Represents 12 029 521 scalar integrals!

Computation needs a terabyte of disk space

Requires solid symbolic manipulation toolkit

Ben Ruijl (benruyl@gmail.com) reFORM

4

FORM
reFORM

Symbolic manipulation
The good, the bad, and the ugly

FORM: the good

Memory is not an issue: terms will be streamed to/from disk

Very fast, low memory usage

Powerful pattern matching

Features for physicists (gamma matrices, indices, . . .)

Open source with issue tracker

1 S x,y,z,a,n,n1;

2 L F = (1+x+y+z)^50;

3 id a?^n?*y^n1? = y^(n+n1); * executed term by term

4 .sort; * terms are merged and sorted

Ben Ruijl (benruyl@gmail.com) reFORM

5

FORM
reFORM

Symbolic manipulation
The good, the bad, and the ugly

FORM: the bad

Limited term length

Memory bugs (written in C)

Strange limits on pattern matching

Sub-par user documentation

Often workarounds required that one “needs to know”

Some of these issues will never be fixed!

Ben Ruijl (benruyl@gmail.com) reFORM

6

FORM
reFORM

Symbolic manipulation
The good, the bad, and the ugly

FORM: the ugly

Preprocessor is used for 90% of the logic

Flow of the program is confusing: preprocessor, implicit term
loop, iterators

1 #do i=1,5

2 .sort

3 #do j=1,‘i’

4 L F‘j’‘i’ = x‘j’+x^2;

5 #write "test2"

6 #enddo

7 Print "%t";

8 #write "test3"

9 #enddo

Ben Ruijl (benruyl@gmail.com) reFORM

7

FORM
reFORM

Symbolic manipulation
The good, the bad, and the ugly

reFORM goals

Goals:

Design a program that takes the good parts of FORM

Use a modern language that prevents memory bugs

Modernize the FORM language, make it more transparent

Fix shortcomings that are hard to fix in FORM itself

Introduce APIs for multiple languages (Python, C, ...)

Improve handling of polynomials (GCD, arithmetic)

Ben Ruijl (benruyl@gmail.com) reFORM

8

FORM
reFORM

Rust
Language features

Problems with C/C++

Writing correct C++ is absurdly difficult

I am not talented enough to write a safe C++ program

1 #include <vector>

2 int main()

3 {

4 std::vector<int> a = {1,2,3};

5 int* ref = &a[0];

6 a.push_back(4);

7 *ref = 5;

8 }

Ben Ruijl (benruyl@gmail.com) reFORM

9

FORM
reFORM

Rust
Language features

Rust

Advantages:

Compile-time guaranteed memory safety

Race conditions are impossible

No undefined behaviour

Pattern matching

Built-in package manager

Supported by Mozilla

Ben Ruijl (benruyl@gmail.com) reFORM

10

FORM
reFORM

Rust
Language features

Borrow checker I

1 fn main() {

2 let mut a = vec![1,2,3];

3 let b = &mut a[0];

4 a.push(4);

5 *b = 5;

6 }

error[E0499]: cannot borrow ‘a‘ as mutable more than once

at a time --> src/main.rs:4:3

|

3 | let b = &mut a[0];

| - first mutable borrow occurs here

4 | a.push(4);

| ^ second mutable borrow occurs here

5 | *b = 5;

| ------ first borrow later used here

Ben Ruijl (benruyl@gmail.com) reFORM

10

FORM
reFORM

Rust
Language features

Borrow checker I

1 fn main() {

2 let mut a = vec![1,2,3];

3 let b = &mut a[0];

4 a.push(4);

5 *b = 5;

6 }

error[E0499]: cannot borrow ‘a‘ as mutable more than once

at a time --> src/main.rs:4:3

|

3 | let b = &mut a[0];

| - first mutable borrow occurs here

4 | a.push(4);

| ^ second mutable borrow occurs here

5 | *b = 5;

| ------ first borrow later used here

Ben Ruijl (benruyl@gmail.com) reFORM

11

FORM
reFORM

Rust
Language features

Borrow checker II

1 fn main() {

2 let mut a = vec![1,2,3];

3 let b = &a[0];

4 a.push(4);

5 println!("{}", b);

6 }

error[E0502]: cannot borrow ‘a‘ as mutable because it is

also borrowed as immutable --> src/main.rs:4:3

|

3 | let b = &a[0];

| - immutable borrow occurs here

4 | a.push(4);

| ^^^^^^^^^ mutable borrow occurs here

5 | println!("{}", b);

| - immutable borrow later used here

Ben Ruijl (benruyl@gmail.com) reFORM

12

FORM
reFORM

Rust
Language features

Pattern matching

1 enum Number {

2 SmallInt(isize),

3 ...

4 }

5 enum Expression {

6 Number(Number),

7 ...

8 }

9 ...

10

11 if x == Expression::Number(Number::SmallInt(5)) {

12 ...

13 }

Ben Ruijl (benruyl@gmail.com) reFORM

13

FORM
reFORM

Rust
Language features

Internals

Almost every operation is an iterator, since the result may not
fit in memory

Expansion operation:(
x + (1 + y)10

) (
3 + (x + y) z

)

Product of factors: Cartesian product iterator

Subexpressions: sequence iterator

Powers of positive integer: binomial iterator

Ben Ruijl (benruyl@gmail.com) reFORM

14

FORM
reFORM

Rust
Language features

reFORM example

Clear distinction between global scope and term-by-term
evaluation by apply block

No preprocessor needed for logic

1 expr F = f(2+y,x*y);

2 $v = 10;

3 for $i in 1..($v * 2) {

4 apply {

5 id f($i+x?,x?*y?) = f(x?);

6 }

7 }

8 print;

Ben Ruijl (benruyl@gmail.com) reFORM

15

FORM
reFORM

Rust
Language features

Extended pattern matcher

1 expr F = f(1,2,f(x1*x2,x3*x4,x5*x6),x1*x3,x3*x5);

2 apply {

3 id all f(1,2,f(?a,x1?*x2?,?b),?c,x1?*x3?) =

4 f(x1?,x2?,x3?);

5 }

yields

1 f(x3,x4,x5)+f(x5,x6,x3)

Ben Ruijl (benruyl@gmail.com) reFORM

16

FORM
reFORM

Rust
Language features

Indexing variables

Variables behave like tables/functions

Indexible with any expression

1 for $i in 1..3 {

2 $a[$i+x,2] = $i;

3 }

4

5 $b = $a[2+x,4] + f(x);

6

7 inside $b {

8 id f(x?) = $a[1+x?,2];

9 id $a[x?,?a,y?] = $a[x?,?a,y?-2];

10 }

11

12 print $b;

Ben Ruijl (benruyl@gmail.com) reFORM

17

FORM
reFORM

Rust
Language features

Python API

1 import reform

2

3 vi = reform.VarInfo()

4 a = reform.Expression("x+y^2", vi)

5 b = reform.Expression("z + y", vi)

6 c = a * b

7

8 print("c: ", c, ", c expanded: ", c.expand())

9

10 d = c.expand().id("x", "1+w", vi)

11 print("Substituted x->1+w: ", d)

Ben Ruijl (benruyl@gmail.com) reFORM

18

FORM
reFORM

Rust
Language features

Python API for polynomials

1 import reform

2

3 vi = reform.VarInfo()

4

5 a = reform.Polynomial("1+x*y+5", vi)

6 b = reform.Polynomial("x^2+2*x*y+y", vi)

7 g = a + b

8

9 ag = a * g

10 bg = b * g

11 print(gcd(ag, bg))

12

13 rat = reform.RationalPolynomial(ag, bg)

14 print(rat)

Ben Ruijl (benruyl@gmail.com) reFORM

19

FORM
reFORM

Rust
Language features

Polynomial GCDs

First class polynomial gcd support

Can easily be used as a library: no overhead from string
conversions!

Often much faster than FORM and Fermat [Lewis ’85]

Seems competitive with Rings [Polavsky ’18]

Ben Ruijl (benruyl@gmail.com) reFORM

20

FORM
reFORM

Rust
Language features

Conclusions

reFORM is a new symbolic manipulation toolkit

In early development

Aims to be be easier to use than FORM

Should be able to process terabytes of terms

API for Python and C

Polynomial GCD library already working

Source code: http://github.com/benruijl/reform

Ben Ruijl (benruyl@gmail.com) reFORM

http://github.com/benruijl/reform

	FORM
	Symbolic manipulation
	The good, the bad, and the ugly

	reFORM
	Rust
	Language features

