
Further developments of FORM

Takahiro Ueda
Seikei University, Tokyo

with Toshiaki Kaneko, Ben Ruijl, Jos Vermaseren
KEK, Tsukuba ETH Zürich Nikhef, Amsterdam

14 March 2019Saas Fee, SwitzerlandACAT 2019

https://www.seikei.ac.jp/university/
https://indico.cern.ch/event/708041/

Contents

Introduction
Recent developments
Further developments

Introduction

FORM is

a toolkit for formula manipulation https://github.com/vermaseren/formVermaseren et al.

Efficient, especially for very big expressions
e.g., y TU’s talk in ACAT 2016

y Ruijl’s talk in ACAT 2017

Parallelisation available with Pthreads or MPI
Term rewriting with imperative programming:Define mathematical expressions you want to manipulateand specify how you want to manipulate

1/18

https://github.com/vermaseren/form
https://github.com/vermaseren/form
https://indico.cern.ch/event/397113/contributions/1837832/
https://indico.cern.ch/event/567550/contributions/2625741/

FORM is
a toolkit for formula manipulation https://github.com/vermaseren/formVermaseren et al.

Efficient, especially for very big expressions
e.g., y TU’s talk in ACAT 2016

y Ruijl’s talk in ACAT 2017

Parallelisation available with Pthreads or MPI
Term rewriting with imperative programming:Define mathematical expressions you want to manipulateand specify how you want to manipulate

1/18

https://github.com/vermaseren/form
https://github.com/vermaseren/form
https://indico.cern.ch/event/397113/contributions/1837832/
https://indico.cern.ch/event/567550/contributions/2625741/

FORM is
a toolkit for formula manipulation https://github.com/vermaseren/formVermaseren et al.

Efficient, especially for very big expressions

e.g., y TU’s talk in ACAT 2016
y Ruijl’s talk in ACAT 2017

Parallelisation available with Pthreads or MPI
Term rewriting with imperative programming:Define mathematical expressions you want to manipulateand specify how you want to manipulate

1/18

https://github.com/vermaseren/form
https://github.com/vermaseren/form
https://indico.cern.ch/event/397113/contributions/1837832/
https://indico.cern.ch/event/567550/contributions/2625741/

FORM is
a toolkit for formula manipulation https://github.com/vermaseren/formVermaseren et al.

Efficient, especially for very big expressions
e.g., y TU’s talk in ACAT 2016

y Ruijl’s talk in ACAT 2017

Parallelisation available with Pthreads or MPI

Term rewriting with imperative programming:Define mathematical expressions you want to manipulateand specify how you want to manipulate

1/18

https://github.com/vermaseren/form
https://github.com/vermaseren/form
https://indico.cern.ch/event/397113/contributions/1837832/
https://indico.cern.ch/event/567550/contributions/2625741/

FORM is
a toolkit for formula manipulation https://github.com/vermaseren/formVermaseren et al.

Efficient, especially for very big expressions
e.g., y TU’s talk in ACAT 2016

y Ruijl’s talk in ACAT 2017

Parallelisation available with Pthreads or MPI
Term rewriting with imperative programming:Define mathematical expressions you want to manipulateand specify how you want to manipulate

1/18

https://github.com/vermaseren/form
https://github.com/vermaseren/form
https://indico.cern.ch/event/397113/contributions/1837832/
https://indico.cern.ch/event/567550/contributions/2625741/

Example
fibonacci.frm 1 CFunction fib;

 2 Symbol n;
 3 Local F = fib(10); * Find the 10th Fibonacci number.

 4
 5 repeat id fib(n?{>=3}) = fib(n - 1) + fib(n - 2);
 6 id fib(2) = 1;
 7 id fib(1) = 1;
 8
 9 Print;
 10 .end

Run FORM as form fibonacci.frm , then. . .
2/18

Example
FORM 4.2.0 (Jul 6 2017, v4.2.0) 64-bits Run: Sat Mar 9 12:39:06 2019

CFunction fib;

Symbol n;

Local F = fib(10); * Find the 10th Fibonacci number.

repeat id fib(n?{>=3}) = fib(n - 1) + fib(n - 2);

id fib(2) = 1;

id fib(1) = 1;

Print;

.end

Time = 0.01 sec Generated terms = 55

F Terms in output = 1

Bytes used = 20

F =

55;

0.01 sec out of 0.00 sec

← stupidly inefficient codebut let’s go further. . .

2/18

Example
FORM 4.2.0 (Jul 6 2017, v4.2.0) 64-bits Run: Sat Mar 9 12:39:06 2019

CFunction fib;

Symbol n;

Local F = fib(10); * Find the 10th Fibonacci number.

repeat id fib(n?{>=3}) = fib(n - 1) + fib(n - 2);

id fib(2) = 1;

id fib(1) = 1;

Print;

.end

Time = 0.01 sec Generated terms = 55

F Terms in output = 1

Bytes used = 20

F =

55;

0.01 sec out of 0.00 sec

← stupidly inefficient codebut let’s go further. . .

2/18

Example

 3 Local F = fib(30); * Find the 30th Fibonacci number.

Time = 0.21 sec Generated terms = 100000

F 1 Terms left = 1

Bytes used = 20

Time = 0.43 sec Generated terms = 200000

F 1 Terms left = 2

Bytes used = 40

Time = 0.65 sec Generated terms = 300000

F 1 Terms left = 3

Bytes used = 60

Time = 0.87 sec Generated terms = 400000

F 1 Terms left = 4

Bytes used = 80

2/18

Example

 3 Local F = fib(30); * Find the 30th Fibonacci number.

Time = 0.21 sec Generated terms = 100000

F 1 Terms left = 1

Bytes used = 20

Time = 0.43 sec Generated terms = 200000

F 1 Terms left = 2

Bytes used = 40

Time = 0.65 sec Generated terms = 300000

F 1 Terms left = 3

Bytes used = 60

Time = 0.87 sec Generated terms = 400000

F 1 Terms left = 4

Bytes used = 80

2/18

Example
Time = 1.50 sec Generated terms = 700000

F 1 Terms left = 7

Bytes used = 140

Time = 1.71 sec Generated terms = 800000

F 1 Terms left = 8

Bytes used = 160

Time = 1.78 sec Generated terms = 832040

F 1 Terms left = 9

Bytes used = 180

Time = 1.78 sec Generated terms = 832040

F Terms in output = 1

Bytes used = 20

F =

832040;

1.78 sec out of 1.82 sec

For big expressionsFORM sorts termsin a hierarchical way(merge sort), which workswell even on disk storage
This is why FORM isgood for extremely bigexpressions

2/18

Example
Time = 1.50 sec Generated terms = 700000

F 1 Terms left = 7

Bytes used = 140

Time = 1.71 sec Generated terms = 800000

F 1 Terms left = 8

Bytes used = 160

Time = 1.78 sec Generated terms = 832040

F 1 Terms left = 9

Bytes used = 180

Time = 1.78 sec Generated terms = 832040

F Terms in output = 1

Bytes used = 20

F =

832040;

1.78 sec out of 1.82 sec

For big expressionsFORM sorts termsin a hierarchical way(merge sort), which workswell even on disk storage
This is why FORM isgood for extremely bigexpressions

2/18

Preprocessor and $-variables

FORM has a powerful ‘preprocessor’ in compile-time
preprocessor instructions starting with ‘#’preprocessor variables, conditional branching, loop constructs,procedures (subroutines), . . . , metaprogramming

$-variable: a variable storing a small expression, which can beaccessed both in compile-time (i.e., by the preprocessor) andrun-time

3/18

Preprocessor and $-variables

FORM has a powerful ‘preprocessor’ in compile-time
preprocessor instructions starting with ‘#’preprocessor variables, conditional branching, loop constructs,procedures (subroutines), . . . , metaprogramming

$-variable: a variable storing a small expression, which can beaccessed both in compile-time (i.e., by the preprocessor) andrun-time
3/18

Preprocessor and $-variables
 1 CFunction fib; Symbol n;

 2
 3 * Build a table with precomputed values.

 4 #define N "1000"

 5 CTable sparse, check, fibtab(1);

 6 Fill fibtab(1) = 1;

 7 Fill fibtab(2) = 1;

 8 #do i=3,`N'

 9 #$value = fibtab(`i' - 1) + fibtab(`i' - 2);

 10 Fill fibtab(`i') = `$value';

 11 #enddo

 12
 13 Local F = fib(1000); * Find the 1000th Fibonacci number.

 14 id fib(n?) = fibtab(n);

 15 Print;

 16 .end

3/18

Preprocessor and $-variables

Time = 0.01 sec Generated terms = 1

F Terms in output = 1

Bytes used = 188

F =

434665576869374564356885276750406258025646605173717804024817290895365554\

179490518904038798400792551692959225930803226347752096896232398733224711\

61642996440906533187938298969649928516003704476137795166849228875;

0.01 sec out of 0.02 sec

Now fast enough

3/18

Preprocessor and $-variables

What if the maximum argument of fibtab is not known?
Element in table is undefined

fibtab(1001)

Program terminating at fibtab2.frm Line 15 -->

3/18

Power of metaprogramming
 1 CFunction fib;

 2 Symbol n;

 3
 4 * User input: suppose we don't

 5 * know the maximum value.

 6 Local F = fib(1001);

 7
 8 * Find the maximum argument.

 9 #$nmax = 0;

 10 if (match(fib(n?$n)));

 11 $nmax = max_($nmax,$n);

 12 endif;

 13 ModuleOption local, $n;

 14 ModuleOption maximum, $nmax;

 15 .sort

* Compilation/running for each .sort/.end

 16 #define N "`$nmax'"

 17 #if `N' > 0

 18 * Build a table.

 19 CTable sparse, check, fibtab(1);

 20 Fill fibtab(1) = 1;

 21 Fill fibtab(2) = 1;

 22 #do i=3,`N'

 23 #$value = fibtab(`i'-1)

 24 + fibtab(`i'-2);

 25 Fill fibtab(`i') = `$value';

 26 #enddo

 27 * And use the table.

 28 id fib(n?) = fibtab(n);

 29 #endif

 30 Print;

 31 .end

4/18

Power of metaprogramming
F =

703303677114228158218352548771835497701812698363587327426049050871545371\

181969335797422494945626117334877504492417659910881863632654502236471060\

12053374121273867339111198139373125598767690091902245245323403501;

0.03 sec out of 0.04 sec

Result of a part of program can change program flowin another part of program
Such optimizations make a difference for millions of terms,
O (1TB) expressions

4/18

“There’s more than one way to do it”
With zero-dimensional sparse tables (v4.2.0)

 1 Symbol n, n1, n2;
 2 CTable fib(n?int_);
 3 CTable fibimpl(n?int_, n1?, n2?);
 4 Fill fib = theta_(- 1 - n) * sign_(n + 1) * fib(- n)
 5 + theta_(n - 1) * fibimpl(n-2, 1, 1);
 6 Fill fibimpl = theta_(- n) * n2
 7 + thetap_(n) * fibimpl(n-1, n2, n1+n2);
 8
 9 L F = fib(1001);
 10 Print;
 11 .end

See also FORM version 4.2 release notes, Ruijl, TU, Vermaseren, arXiv:1707.06453 5/18

https://arxiv.org/abs/1707.06453

Recent developments

FORM version 4.2.1
https://github.com/vermaseren/form/releases

6/18

https://github.com/vermaseren/form/releases
https://github.com/vermaseren/form/releases

FORM version 4.2.1
https://github.com/vermaseren/form/releasesOver 80 commits since 4.2.0(July 2017)

Mainly bug fixes, but also containsnew/experimental features
Contributors include:
(in alphabetical order)

Stephen Jones
Alex Myczko
Maximilian Reininghausand many bug reporters Thank you!

6/18

https://github.com/vermaseren/form/releases
https://github.com/vermaseren/form/releases

FORM version 4.2.1
https://github.com/vermaseren/form/releasesOver 80 commits since 4.2.0(July 2017)

Mainly bug fixes, but also containsnew/experimental features

Contributors include:
(in alphabetical order)

Stephen Jones
Alex Myczko
Maximilian Reininghausand many bug reporters Thank you!

6/18

https://github.com/vermaseren/form/releases
https://github.com/vermaseren/form/releases

FORM version 4.2.1
https://github.com/vermaseren/form/releasesOver 80 commits since 4.2.0(July 2017)

Mainly bug fixes, but also containsnew/experimental features
Contributors include:
(in alphabetical order)

Stephen Jones
Alex Myczko
Maximilian Reininghausand many bug reporters Thank you!

6/18

https://github.com/vermaseren/form/releases
https://github.com/vermaseren/form/releases

Installing FORM

If you have latest OSes. . .
Canonical will shipUbuntu 19.04 ‘Disco Dingo’in April, which includesFORM 4.2.1
$ sudo apt-get update

$ sudo apt-get install form

7/18

Installing FORM

You can use package repositories of
• AUR (Arch Linux)
• Homebrew (macOS) / Linuxbrew (Linux/WSL)

or build FORM yourself. See instructions in
https://github.com/vermaseren/form/wiki/Installation

7/18

https://aur.archlinux.org/
https://brew.sh/
https://linuxbrew.sh/
https://github.com/vermaseren/form/wiki/Installation

Installing FORM
There are also Linux and macOS binaries in the release page

7/18

https://github.com/vermaseren/form/releases

Big bug fixes

When a big calculation is running, FORM uses gzipcompression to store expressions on disk,but routines calling a library (zlib) was so buggy
• Randomly stopped with non-sense error messages
• Big memory leaks continuously increased memory usage

They were fixed (at least for many cases)
8/18

Some improvements
Just upgrading FORM may give some speed-up

9/18

More bugs?

The new release 4.2.1 contains improvements and bug fixesBut might have introduced other bugs
Please file bugs you found as well as questions/suggestions
https://github.com/vermaseren/form/issues

10/18

https://github.com/vermaseren/form/issues

Further developments

Current projects

Namespace (Issue #236)
Graph manipulation

11/18

https://github.com/vermaseren/form/issues/236

Everything is global

In FORM, (almost) everything is put in the ‘global namespace’
expressions, symbols, variables etc.No local objects scoped in any parts of programs

When one uses a library made by another, the library user(and library creator) must be very careful not to break anything

12/18

Everything is global

In FORM, (almost) everything is put in the ‘global namespace’
expressions, symbols, variables etc.No local objects scoped in any parts of programs

When one uses a library made by another, the library user(and library creator) must be very careful not to break anything

12/18

Using libraries considered dangerous
Simple library with a procedure to compute derivatives ofpolynomials

deriv.h 1 * Find the derivative of a polynomial w.r.t. `x'.

 2 Symbol n;
 3 #procedure Derivative(x)
 4 id `x'^n? = n * `x'^(n - 1);
 5 #endprocedure

13/18

Using libraries considered dangerous
deriv.h 1 * Find the derivative of a polynomial w.r.t. `x'.

 2 Symbol n;

 3 #procedure Derivative(x)

 4 id `x'^n? = n * `x'^(n - 1);

 5 #endprocedure

can be used as
 1 #include deriv.h
 2 Symbol x;
 3 Local F = (1 + x)^2;
 4 #call Derivative(x)
 5 Print;
 6 .end

13/18

Using libraries considered dangerous
deriv.h 1 * Find the derivative of a polynomial w.r.t. `x'.

 2 Symbol n;

 3 #procedure Derivative(x)

 4 id `x'^n? = n * `x'^(n - 1);

 5 #endprocedure

can be used as
 1 #include deriv.h
 2 Symbol x;
 3 Local F = (1 + x)^2;
 4 #call Derivative(x)
 5 Print;
 6 .end

F =
2 + 2*x;

13/18

Using libraries considered dangerous
deriv.h 1 * Find the derivative of a polynomial w.r.t. `x'.

 2 Symbol n;

 3 #procedure Derivative(x)

 4 id `x'^n? = n * `x'^(n - 1);

 5 #endprocedure

also works for multivariate polynomials
 1 #include deriv.h
 2 Symbol x, y;
 3 Local F = (x + y)^2;
 4 #call Derivative(y)
 5 Print;
 6 .end

13/18

Using libraries considered dangerous
deriv.h 1 * Find the derivative of a polynomial w.r.t. `x'.

 2 Symbol n;

 3 #procedure Derivative(x)

 4 id `x'^n? = n * `x'^(n - 1);

 5 #endprocedure

also works for multivariate polynomials
 1 #include deriv.h
 2 Symbol x, y;
 3 Local F = (x + y)^2;
 4 #call Derivative(y)
 5 Print;
 6 .end

F =
2*y + 2*x;

13/18

Using libraries considered dangerous
deriv.h 1 * Find the derivative of a polynomial w.r.t. `x'.

 2 Symbol n;

 3 #procedure Derivative(x)

 4 id `x'^n? = n * `x'^(n - 1);

 5 #endprocedure

but does not work for a corner case
 1 #include deriv.h
 2 Symbol n;
 3 Local F = (1 + n)^2;
 4 #call Derivative(n)
 5 Print;
 6 .end

13/18

Using libraries considered dangerous
deriv.h 1 * Find the derivative of a polynomial w.r.t. `x'.

 2 Symbol n;

 3 #procedure Derivative(x)

 4 id `x'^n? = n * `x'^(n - 1);

 5 #endprocedure

but does not work for a corner case
 1 #include deriv.h
 2 Symbol n;
 3 Local F = (1 + n)^2;
 4 #call Derivative(n)
 5 Print;
 6 .end

F =
6;

Conflict for the same symbol n

13/18

Classical solutions
1 Put a prefix for private symbols

color.h 1 AutoDeclare Index cOli,cOlj,cOlk,cOln;
 2 AutoDeclare Symbol cOlI;
 3 AutoDeclare Vector cOlp,cOlq;
 4 AutoDeclare Symbol cOlx,cOly,cOlc;
 5 AutoDeclare Tensor cOld;
 6 AutoDeclare Tensor cOldr(symmetric),cOlda(symmetric);

Developer-unfriendly, spoils readability

14/18

Classical solutions
2 Put the responsibility on users

forcer.h 1 **

 2 * The input can consist of the following symbols

 3 * in a proper format.

 4 * Any use of other symbols is at your own risk.

 5 *

 6 CF vx,ex;
 7 V p1,...,p11,Q;

User-unfriendly, the user may need to know everythingin the library (223049 lines for FORCER)
14/18

Namespace as the solution?

What we need is something like
 1 * Find the derivative of a polynomial w.r.t. `x'.

 2 #namespace deriv
 3 Symbol n;
 4 #procedure Derivative(x)
 5 id `x'^n? = n * `x'^(n - 1);
 6 #endprocedure
 7 #endnamespace

such that the private symbol n is hidden from the outsideTough to implement, still in a discussion stage
15/18

Graph manipulation

Manipulating graph structure is useful/mandatoryfor HEP computations
• Generating Feynman diagrams
• UV/IR subdivergences originated from subdiagrams

Idea: Incorporating the graph generator of GRACE Kaneko ’95

16/18

Technical preview: topologies_ function
An experimental function topologies_ is in v4.2.1

(will be deprecated)
 1 Vectors Q1,...,Q99;
 2 Vectors p1,...,p99;
 3 Set QQ: Q1,...,Q99; * for external lines

 4 Set pp: p1,...,p99; * for internal lines

 5 #define NLOOPS "2"
 6 #define NLEGS "2"
 7 Local F = topologies_(`NLOOPS',`NLEGS',{3,},QQ,pp);
 8 Print +sss;
 9 .end

17/18

Technical preview: topologies_ function
F =

+

node_(0,-Q1)

*node_(1,-Q2)

*node_(2,Q1,-p1,-p2)

*node_(3,Q2,p1,-p3)

*node_(4,p2,-p4,-p5)

*node_(5,p3,p4,p5)

+

node_(0,-Q1)

*node_(1,-Q2)

*node_(2,Q1,-p1,-p2)

*node_(3,p1,-p3,-p4)

*node_(4,p2,p3,-p5)

*node_(5,Q2,p4,p5)

;

17/18

Technical preview: topologies_ function
F =

+

node_(0,-Q1)

*node_(1,-Q2)

*node_(2,Q1,-p1,-p2)

*node_(3,Q2,p1,-p3)

*node_(4,p2,-p4,-p5)

*node_(5,p3,p4,p5)

+

node_(0,-Q1)

*node_(1,-Q2)

*node_(2,Q1,-p1,-p2)

*node_(3,p1,-p3,-p4)

*node_(4,p2,p3,-p5)

*node_(5,Q2,p4,p5)

;

0 12 3

4 5

Q1 Q2

p1

p2 p3

p4

p5

0 12

3

4

5
Q1 Q2

p1

p2

p3

p4

p5

17/18

Technical preview: topologies_ function

NLOOPS # of topologies Time∗

2 2 < 0.01s3 10 < 0.01s4 64 < 0.01s5 519 0.05s6 4999 0.75s7 55758 10.12s
* On my Windows laptop (Surface Pro 4/i5-6300U/WSL)

17/18

Summary

As symbolic manipulation is important for HEP communityand other fields, FORM evolves with new features as well asbug fixes and improvements
FORM 4.2.1 released:
https://github.com/vermaseren/form/releases

(Near) future developments: graph generations (work in progress)and namespaces (still discussion stage), hopefully in version 4.3?
18/18

https://github.com/vermaseren/form/releases

Backup

Non-trivial conflict in preprocessor
Preprocessor variables have a ‘stack’, but still non-trivial conflict may occur

 1 * Store a magic number into the given variable.

 2 #procedure Get(x)

 3 #redefine `x' "123"

 4 #endprocedure

 5
 6 #define a

 7 #call Get(a)

 8 #message a = `a'

 9 * a = 123

 10
 11 #define x

 12 #call Get(x)

 13 #message x = `x'

 14 * x = 1

 15 .end

Appendix - 1/1

	Further developments of FORM
	Contents
	Introduction
	FORM
	Example
	Preprocessor and $-variables
	Power of metaprogramming
	``There's more than one way to do it''

	Recent developments
	FORM version 4.2.1
	Installing FORM
	Big bug fixes
	Some improvements
	More bugs?

	Further developments
	Current projects
	Everything is global
	Using libraries considered dangerous
	Classical solutions
	Namespace as the solution?
	Graph manipulation
	Technical preview: topologies_ function
	Summary

	Backup
	Non-trivial conflict in preprocessor

	anm0:

