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Introduction



FORM is

a toolkit for formula manipulation https://github.com/vermaseren/formVermaseren et al.

Efficient, especially for very big expressions
e.g., y TU’s talk in ACAT 2016

y Ruijl’s talk in ACAT 2017

Parallelisation available with Pthreads or MPI
Term rewriting with imperative programming:Define mathematical expressions you want to manipulateand specify how you want to manipulate
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Example
fibonacci.frm 1 CFunction fib;

 2 Symbol n;
 3 Local F = fib(10); * Find the 10th Fibonacci number.

 4
 5 repeat id fib(n?{>=3}) = fib(n - 1) + fib(n - 2);
 6 id fib(2) = 1;
 7 id fib(1) = 1;
 8
 9 Print;
 10 .end

Run FORM as form fibonacci.frm , then. . .
2/18



Example
FORM 4.2.0 (Jul 6 2017, v4.2.0) 64-bits Run: Sat Mar 9 12:39:06 2019

CFunction fib;

Symbol n;

Local F = fib(10); * Find the 10th Fibonacci number.

repeat id fib(n?{>=3}) = fib(n - 1) + fib(n - 2);

id fib(2) = 1;

id fib(1) = 1;

Print;

.end

Time = 0.01 sec Generated terms = 55

F Terms in output = 1

Bytes used = 20

F =

55;

0.01 sec out of 0.00 sec

← stupidly inefficient codebut let’s go further. . .
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Example

 3 Local F = fib(30); * Find the 30th Fibonacci number.

Time = 0.21 sec Generated terms = 100000

F 1 Terms left = 1

Bytes used = 20

Time = 0.43 sec Generated terms = 200000

F 1 Terms left = 2

Bytes used = 40

Time = 0.65 sec Generated terms = 300000

F 1 Terms left = 3

Bytes used = 60

Time = 0.87 sec Generated terms = 400000

F 1 Terms left = 4

Bytes used = 80
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Example
Time = 1.50 sec Generated terms = 700000

F 1 Terms left = 7

Bytes used = 140

Time = 1.71 sec Generated terms = 800000

F 1 Terms left = 8

Bytes used = 160

Time = 1.78 sec Generated terms = 832040

F 1 Terms left = 9

Bytes used = 180

Time = 1.78 sec Generated terms = 832040

F Terms in output = 1

Bytes used = 20

F =

832040;

1.78 sec out of 1.82 sec

For big expressionsFORM sorts termsin a hierarchical way(merge sort), which workswell even on disk storage
This is why FORM isgood for extremely bigexpressions
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Preprocessor and $-variables

FORM has a powerful ‘preprocessor’ in compile-time
preprocessor instructions starting with ‘#’preprocessor variables, conditional branching, loop constructs,procedures (subroutines), . . . , metaprogramming

$-variable: a variable storing a small expression, which can beaccessed both in compile-time (i.e., by the preprocessor) andrun-time

3/18



Preprocessor and $-variables

FORM has a powerful ‘preprocessor’ in compile-time
preprocessor instructions starting with ‘#’preprocessor variables, conditional branching, loop constructs,procedures (subroutines), . . . , metaprogramming

$-variable: a variable storing a small expression, which can beaccessed both in compile-time (i.e., by the preprocessor) andrun-time
3/18



Preprocessor and $-variables
 1 CFunction fib; Symbol n;

 2
 3 * Build a table with precomputed values.

 4 #define N "1000"

 5 CTable sparse, check, fibtab(1);

 6 Fill fibtab(1) = 1;

 7 Fill fibtab(2) = 1;

 8 #do i=3,`N'

 9 #$value = fibtab(`i' - 1) + fibtab(`i' - 2);

 10 Fill fibtab(`i') = `$value';

 11 #enddo

 12
 13 Local F = fib(1000); * Find the 1000th Fibonacci number.

 14 id fib(n?) = fibtab(n);

 15 Print;

 16 .end
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Preprocessor and $-variables

Time = 0.01 sec Generated terms = 1

F Terms in output = 1

Bytes used = 188

F =

434665576869374564356885276750406258025646605173717804024817290895365554\

179490518904038798400792551692959225930803226347752096896232398733224711\

61642996440906533187938298969649928516003704476137795166849228875;

0.01 sec out of 0.02 sec

Now fast enough
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Preprocessor and $-variables

What if the maximum argument of fibtab is not known?
Element in table is undefined

fibtab(1001)

Program terminating at fibtab2.frm Line 15 -->
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Power of metaprogramming
 1 CFunction fib;

 2 Symbol n;

 3
 4 * User input: suppose we don't

 5 * know the maximum value.

 6 Local F = fib(1001);

 7
 8 * Find the maximum argument.

 9 #$nmax = 0;

 10 if (match(fib(n?$n)));

 11 $nmax = max_($nmax,$n);

 12 endif;

 13 ModuleOption local, $n;

 14 ModuleOption maximum, $nmax;

 15 .sort

* Compilation/running for each .sort/.end

 16 #define N "`$nmax'"

 17 #if `N' > 0

 18 * Build a table.

 19 CTable sparse, check, fibtab(1);

 20 Fill fibtab(1) = 1;

 21 Fill fibtab(2) = 1;

 22 #do i=3,`N'

 23 #$value = fibtab(`i'-1)

 24 + fibtab(`i'-2);

 25 Fill fibtab(`i') = `$value';

 26 #enddo

 27 * And use the table.

 28 id fib(n?) = fibtab(n);

 29 #endif

 30 Print;

 31 .end
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Power of metaprogramming
F =

703303677114228158218352548771835497701812698363587327426049050871545371\

181969335797422494945626117334877504492417659910881863632654502236471060\

12053374121273867339111198139373125598767690091902245245323403501;

0.03 sec out of 0.04 sec

Result of a part of program can change program flowin another part of program
Such optimizations make a difference for millions of terms,
O (1TB) expressions
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“There’s more than one way to do it”
With zero-dimensional sparse tables (v4.2.0)

 1 Symbol n, n1, n2;
 2 CTable fib(n?int_);
 3 CTable fibimpl(n?int_, n1?, n2?);
 4 Fill fib = theta_(- 1 - n) * sign_(n + 1) * fib(- n)
 5 + theta_(n - 1) * fibimpl(n-2, 1, 1);
 6 Fill fibimpl = theta_(- n) * n2
 7 + thetap_(n) * fibimpl(n-1, n2, n1+n2);
 8
 9 L F = fib(1001);
 10 Print;
 11 .end

See also FORM version 4.2 release notes, Ruijl, TU, Vermaseren, arXiv:1707.06453 5/18

https://arxiv.org/abs/1707.06453


Recent developments



FORM version 4.2.1
https://github.com/vermaseren/form/releases
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FORM version 4.2.1
https://github.com/vermaseren/form/releasesOver 80 commits since 4.2.0(July 2017)

Mainly bug fixes, but also containsnew/experimental features
Contributors include:
(in alphabetical order)

Stephen Jones
Alex Myczko
Maximilian Reininghausand many bug reporters Thank you!
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Installing FORM

If you have latest OSes. . .
Canonical will shipUbuntu 19.04 ‘Disco Dingo’in April, which includesFORM 4.2.1
$ sudo apt-get update

$ sudo apt-get install form

7/18



Installing FORM

You can use package repositories of
• AUR (Arch Linux)
• Homebrew (macOS) / Linuxbrew (Linux/WSL)

or build FORM yourself. See instructions in
https://github.com/vermaseren/form/wiki/Installation

7/18
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Installing FORM
There are also Linux and macOS binaries in the release page

7/18
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Big bug fixes

When a big calculation is running, FORM uses gzipcompression to store expressions on disk,but routines calling a library (zlib) was so buggy
• Randomly stopped with non-sense error messages
• Big memory leaks continuously increased memory usage

They were fixed (at least for many cases)
8/18



Some improvements
Just upgrading FORM may give some speed-up
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More bugs?

The new release 4.2.1 contains improvements and bug fixesBut might have introduced other bugs
Please file bugs you found as well as questions/suggestions
https://github.com/vermaseren/form/issues

10/18
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Further developments



Current projects

Namespace (Issue #236)
Graph manipulation

11/18

https://github.com/vermaseren/form/issues/236


Everything is global

In FORM, (almost) everything is put in the ‘global namespace’
expressions, symbols, variables etc.No local objects scoped in any parts of programs

When one uses a library made by another, the library user(and library creator) must be very careful not to break anything

12/18
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Using libraries considered dangerous
Simple library with a procedure to compute derivatives ofpolynomials

deriv.h 1 * Find the derivative of a polynomial w.r.t. `x'.

 2 Symbol n;
 3 #procedure Derivative(x)
 4 id `x'^n? = n * `x'^(n - 1);
 5 #endprocedure

13/18
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deriv.h 1 * Find the derivative of a polynomial w.r.t. `x'.
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 1 #include deriv.h
 2 Symbol n;
 3 Local F = (1 + n)^2;
 4 #call Derivative(n)
 5 Print;
 6 .end

F =
6;

Conflict for the same symbol n
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Classical solutions
1 Put a prefix for private symbols

color.h 1 AutoDeclare Index cOli,cOlj,cOlk,cOln;
 2 AutoDeclare Symbol cOlI;
 3 AutoDeclare Vector cOlp,cOlq;
 4 AutoDeclare Symbol cOlx,cOly,cOlc;
 5 AutoDeclare Tensor cOld;
 6 AutoDeclare Tensor cOldr(symmetric),cOlda(symmetric);

Developer-unfriendly, spoils readability
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Classical solutions
2 Put the responsibility on users

forcer.h 1 **

 2 * The input can consist of the following symbols

 3 * in a proper format.

 4 * Any use of other symbols is at your own risk.

 5 *

 6 CF vx,ex;
 7 V p1,...,p11,Q;

User-unfriendly, the user may need to know everythingin the library (223049 lines for FORCER)
14/18



Namespace as the solution?

What we need is something like
 1 * Find the derivative of a polynomial w.r.t. `x'.

 2 #namespace deriv
 3 Symbol n;
 4 #procedure Derivative(x)
 5 id `x'^n? = n * `x'^(n - 1);
 6 #endprocedure
 7 #endnamespace

such that the private symbol n is hidden from the outsideTough to implement, still in a discussion stage
15/18



Graph manipulation

Manipulating graph structure is useful/mandatoryfor HEP computations
• Generating Feynman diagrams
• UV/IR subdivergences originated from subdiagrams

Idea: Incorporating the graph generator of GRACE Kaneko ’95

16/18



Technical preview: topologies_ function
An experimental function topologies_ is in v4.2.1

(will be deprecated)
 1 Vectors Q1,...,Q99;
 2 Vectors p1,...,p99;
 3 Set QQ: Q1,...,Q99; * for external lines

 4 Set pp: p1,...,p99; * for internal lines

 5 #define NLOOPS "2"
 6 #define NLEGS "2"
 7 Local F = topologies_(`NLOOPS',`NLEGS',{3,},QQ,pp);
 8 Print +sss;
 9 .end

17/18



Technical preview: topologies_ function
F =

+

node_(0,-Q1)

*node_(1,-Q2)

*node_(2,Q1,-p1,-p2)

*node_(3,Q2,p1,-p3)

*node_(4,p2,-p4,-p5)

*node_(5,p3,p4,p5)

+

node_(0,-Q1)

*node_(1,-Q2)

*node_(2,Q1,-p1,-p2)

*node_(3,p1,-p3,-p4)

*node_(4,p2,p3,-p5)

*node_(5,Q2,p4,p5)

;
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Technical preview: topologies_ function

NLOOPS # of topologies Time∗

2 2 < 0.01s3 10 < 0.01s4 64 < 0.01s5 519 0.05s6 4999 0.75s7 55758 10.12s
* On my Windows laptop (Surface Pro 4/i5-6300U/WSL)
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Summary

As symbolic manipulation is important for HEP communityand other fields, FORM evolves with new features as well asbug fixes and improvements
FORM 4.2.1 released:
https://github.com/vermaseren/form/releases

(Near) future developments: graph generations (work in progress)and namespaces (still discussion stage), hopefully in version 4.3?
18/18

https://github.com/vermaseren/form/releases


Backup



Non-trivial conflict in preprocessor
Preprocessor variables have a ‘stack’, but still non-trivial conflict may occur

 1 * Store a magic number into the given variable.

 2 #procedure Get(x)

 3 #redefine `x' "123"

 4 #endprocedure

 5
 6 #define a

 7 #call Get(a)

 8 #message a = `a'

 9 * a = 123

 10
 11 #define x

 12 #call Get(x)

 13 #message x = `x'

 14 * x = 1

 15 .end
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