

Double Higgs Production in the high- and low-energy limits

ACAT 2019 | JHEP 03 (2018) 048, JHEP 01 (2019) 176

Joshua Davies, Go Mishima, Matthias Steinhauser, David Wellmann | March 13, 2019

INSTITUTE FOR THEORETICAL PARTICLE PHYSICS (TTP)

Introduction

Dominant channel at a hadron collider: gluon fusion.

$$\mathcal{M}^{\mu
u} \sim \mathcal{A}_1^{\mu
u}(\mathcal{F}_{tri} + \mathcal{F}_{box1}) + \mathcal{A}_2^{\mu
u}(\mathcal{F}_{box2})$$

 $\text{Projectors: } \mathcal{F}_{tri} + \mathcal{F}_{box1} = \textit{P}_{1\,\mu\nu}\mathcal{M}^{\mu\nu}, \ \mathcal{F}_{box2} = \textit{P}_{2\,\mu\nu}\mathcal{M}^{\mu\nu}.$

Gives access to the Higgs self-coupling λ_{HHH} via \mathcal{F}_{tri} .

experimentally challenging measurement (small cross-section)

perhaps feasible with HL-LHC?

Introduction	High-Energy Limit	Large-mt Limit		Conclusion
•00	0000000	0000000		0
Joshua Davies, Go Mishima, Matthias S	Steinhauser, David Wellmann – gg→HH, high-	+low en. limit	March 13, 2019	2/20

Theory Status

LO

full result

NLO

- [Glover,van der Bij '88][Plehn,Spira,Zerwas '98]
- numerical result [Borowka,Greiner,Heinrich,Jones,Kerner,Schlenk,Zicke '16]
 [Baglio,Campanario,Glaus,Mühlleitner,Spira,Streicher '18]
- large-m_t limit [Dawson,Dittmaier,Spira '98] [Grigo,Hoff,Melnikov,Steinhauser '13]
 - [Degrassi, Giardine, Gröber '16]
 - [Gröber,Maier,Rauh '17]

NNLO

- large-*m*_t limit [de Florian,Mazzitelli '13] [Grigo,Melnikov,Steinhauser '14]
 - [Grigo,Hoff,Steinhauser '15]
 - finite-*m*t estimate [Grazzini,Heinrich,Jones,Kallweit,Kerner,Lindert,Mazzitelli '18]

This talk:

NLO high-energy limit

Padé approx. (large-m_t + threshold)

NNLO large-m_t limit

[Davies, Mishima, Steinhauser, Wellmann '18, '19]

Introduction	High-Energy Limit	Large-mt Limit		Conclusion
000	0000000	0000000		0
Joshua Davies, Go Mishima, Matthias S	teinhauser, David Wellmann – gg $ ightarrow$ HH, high-	⊢low en. limit	March 13, 2019	3/20

Leading Order

- High-energy limit: $s, t \gg m_t^2 > m_H^2$
- Large- m_t : $m_t \to \infty$

High-Energy Limit

Procedure:

Amplitude in terms of Feynman integrals: $I(m_H^2, m_t^2)$ \downarrow Expand around $m_H^2 = 0$: $I(0, m_t^2) + m_H^2 I'(0, m_t^2) + \cdots$ \downarrow IBP reduce Feynman integrals to master integrals: $J(0, m_t^2)$ \downarrow Determine master integrals around $m_t^2 = 0$: $J(0, m_t^2) = \sum_{m,n} C_{m,n} (m_t^2)^m \log (m_t^2)^n$ \downarrow Amplitude for s, t $\gg m_t^2 > m_H^2$

 Introduction
 High-Energy Limit
 Large-m_t Limit
 Conclusion

 000
 0000000
 0000000
 0000000

 Joshua Davies, Go Mishima, Matthias Steinhauser, David Wellmann – gg→HH, high+low en. limit
 March 13, 2019
 5/20

Software

Diagram generation	qgraf	[Nogueira '93]
Topology mapping	q2e/exp	[Harlander,Seidelsticker,Steinhauser '97]
Physics, projection	TFORM 4.2	[Ruijl,Ueda,Vermaseren '17]
$m_H^2 = 0$ expansion	LiteRed	[Lee '13]
IBP Reduction	FIRE 5.2	[Smirnov '14]
	(LiteRed)	[Lee '13]

Feynman Diagrams:
$$8^{LO} + 118^{NLO}$$

 \downarrow
Feynman Integrals: 26K (+120K ($m_H^2 \exp$))
 \downarrow
Masters Integrals: 10^{LO} + 161^{NLO}

IBP reduce topologies separately \sim 3 weeks. Lots of memory required.

Introduction	High-Energy Limit	Large-mt Limit		Conclusion
000	0000000	0000000		0
Joshua Davies, Go Mishima, Matthias S	Steinhauser, David Wellmann – $gg \rightarrow HH$, high	+low en. limit	March 13, 2019	6/20

Compute masters: differential equations

Differentiate master integrals wrt $X \in \{s, t, m_t^2\}$. IBP reduce result:

$$\frac{\mathrm{d}}{\mathrm{d}X}\,\vec{J}=M(s,t,m_t^2,\epsilon)\cdot\vec{J}.$$

 m_t^2 equation: substitute high-energy ansatz for each master integral,

$$J = \sum_{i} \sum_{j} \sum_{k} C_{ijk}(s,t) \epsilon^{i} (m_{t}^{2})^{j} \log (m_{t}^{2})^{k}.$$

Obtain a system of linear equations for coefficients $C_{ijk}(s, t)$. Solve!

... we require Boundary Conditions

• determine leading powers in $m_t^2
ightarrow$ fixes some $C_{ijk}(s,t)$

Here we determine the amplitude to m_t^{32} with Mathematica ... difficult!

Introduction	High-Energy Limit	Large-mt Limit	Conclusion
000	000000	0000000	0
Joshua Davies, Go Mishima, Matthias	Steinhauser, David Wellmann – gg $ ightarrow$ HH, hi	igh+low en. limit March 13, 2019	7/20

Results: Form Factors

(Renorm. and IR subtraction: $\mathcal{F}_{X}^{(1)} = \mathcal{F}_{X}^{(1), /R-div.} - \mathcal{K}_{q}^{(1)} \mathcal{F}_{X}^{(0)}$)

 \mathcal{F}_{tri} known exactly at NLO: $gg \rightarrow H$.

Joshua Davies, Go Mishima, Matthias Steinhauser, David Wellmann - gg→HH, high+low en. limit

Results: Form Factors

 $\mathcal{F}_{box1}, \mathcal{F}_{box2}$: no exact result for comparison.

Introduction	High-Energy Limit	Large-mt Limit		Conclusion
000	0000000	0000000		0
Joshua Davies, Go Mishima, Matthias S	Steinhauser, David Wellmann – $gg \rightarrow HH$, high	+low en. limit	March 13, 2019	9/20

Results: V_{fin}

 V_{fin} : IR finite (subtracted) virtual cross-section. Here, m_t^{30} , m_t^{32} terms.

[Heinrich, Jones, Kerner, Luisoni, Vryonidou '17]

Padé Improved V_{fin}

Padé Approximant:

$$[n/m](m_t^2) = \frac{a_0 + a_1 m_t^2 + a_2 (m_t^2)^2 + \dots + a_n (m_t^2)^n}{1 + b_1 m_t^2 + b_2 (m_t^2)^2 + \dots + b_m (m_t^2)^m}$$

use high-energy expansion to fix coefficients a_i, b_i.

• evaluate for $m_t = 173 \text{ GeV}$

Compute Padé approximants with n + m = 16, $|n - m| \le 2$:

[8/8], **[7/8]**, **[8/7]**, **[7/9]**, **[9/7]**

Take mean value, stdev for error estimate.

Introduction	High-Energy Limit	Large-mt Limit		Conclusion
000	00000000	0000000		0
Joshua Davies, Go Mishima, Matthias	Steinhauser, David Wellmann - gg→HH, high	+low en. limit	March 13, 2019	11/20

Results: Padé Improved V_{fin}

In progress: use high-energy input to improve hhgrid.

Introduction	High-Energy Limit	Large-mt Limit		Conclusion
000	0000000	0000000		0
Joshua Davies, Go Mishima, Matthias S	teinhauser, David Wellmann – gg \rightarrow HH, high-	⊢low en. limit	March 13, 2019	12/20

Large-m_t Limit

Previous NNLO calculation:

- leading
 [de Florian,Mazzitelli '13][Grigo,Melnikov,Steinhauser '14]
- terms to 3rd order $(1/m_t^4)$ for diff. XS

[Grigo,Hoff,Steinhauser '15]

Here:

• terms to 5th order $(1/m_t^8)$ for form factors

Diagram generation	qgraf	[Nogueira '93]
Asymp. exp. code	q2e/exp	[Harlander,Seidelsticker,Steinhauser '97]
Expansion	TFORM 4.2	[Ruijl,Ueda,Vermaseren '17]
Massive vacuum gr.	MATAD	[Steinhauser '00]

Introduction	High-Energy Limit	Large- <i>m</i> t Limit ●000000		Conclusion O
Joshua Davies, Go Mishima, Matthias S	steinhauser, David Wellmann – gg $ ightarrow$ HH, high	+low en. limit N	larch 13, 2019	13/20

Asymptotic Expansion

Expand diagrams for $m_t \gg q_1, q_2, q_3$:

- Yields expansion in powers of $\{q_3 \cdot q_3, q_1 \cdot q_2, q_1 \cdot q_3, q_2 \cdot q_3\}/m_t^2$.
- Diagrams factorize into products of lower-loop massless graphs and hard sub-graphs.
- Expansion of these hard sub-graphs yield massive vacuum graphs (can be treated by MATAD).

Eg,

Each \bullet is a large sum of massive vacuum (**tensor**) integrals. We wish to expand to 5th order $(1/m_t^8)$.

If treated by MATAD, large bottleneck (esp. at 3 loops).

Introduction	High-Energy Limit	Large-mt Limit		Conclusion
000	0000000	000000		0
Joshua Davies, Go Mishima, Matthias S	Steinhauser, David Wellmann – $gg \rightarrow HH$, high	+low en. limit	March 13, 2019	14/20

Projection

Avoid computing three-loop vacuum tensor integrals by projecting each diagram onto a basis

$$B = \sum_{L=0}^{L_{max}} \sum_{k+l+m+n}^{=L} C_{k,l,m,n} (q_3 \cdot q_3)^k (q_1 \cdot q_2)^l (q_1 \cdot q_3)^m (q_2 \cdot q_3)^n,$$

using projectors $P_{k,l,m,n}B = C_{k,l,m,n}$.

 $P_{k,l,m,n} \text{ defined in terms of derivative operators } \Box_{a,b} = \frac{\partial}{\partial q_{a\mu}} \frac{\partial}{\partial q_{b}^{\mu}}. \text{ Eg:}$ $P_{0,0,0,2} = \frac{1}{2d^2 + 2d - 4} \Box_{2,3} \Box_{2,3} - \frac{1}{2d^3 + 2d^2 - 4d} \Box_{2,2} \Box_{3,3}.$

For $1/m_t^{\{0,2,4,6,8\}}$ expansion there are $\{15, 38, 88, 174, 324\}$ derivative combinations to evaluate, for each diagram.

After derivatives, only scalar vacuum integrals remain - easy for MATAD.

Introduction	High-Energy Limit	Large-mt Limit		Conclusion
000	0000000	000000		0
Joshua Davies, Go Mishima, Matthias S	teinhauser, David Wellmann – gg $ ightarrow$ HH, high-	+low en. limit	March 13, 2019	15/20

Computation

Procedure:

- Sum diagrams with same colour factor: 9 "super-diagrams"
- Apply 5 structures of form-factor projectors: 45 projected objects

Total stored: 324GB (compressed with gzip - crucial).

29K	ſ	Compute a derivative. Load only necessary terms.
easy tasks	{	\downarrow Scalar vacuum integrals for MATAD.

Combine all results together.

Total time \sim 4.5 yr (\sim 1 month).

Introduction	High-Energy Limit	Large-mt Limit		Conclusion
000	0000000	0000000		0
Joshua Davies, Go Mishima, Matthias S	teinhauser, David Wellmann – gg→HH, high⊣	-low en. limit	March 13, 2019	16/20

Essential Optimizations

Terms have the form:

```
+ Den(l1,mt) * Den(l1+q1,mt) * ... * ( many terms ) where ( many terms ) do not take part in the expansion.
```

Expansion of the denominators takes place over many FORM modules. Repeated sorting of huge expressions to disk is a **large bottleneck**.

"Hide" these terms with the construction

Bracket Den;

.sort

```
Collect f;
```

ArgToExtraSymbol f;

and reinstate them after expansion is complete.

Larger memory requirement, but smaller expressions.

Introduction	High-Energy Limit	Large-mt Limit	Conclusion
000	0000000	0000000	0
Joshua Davies, Go Mishima, Matthias S	teinhauser, David Wellmann - gg→HH, high	+low en. limit March 13, 2	019 17/20

Essential Optimizations

Vacuum diagrams are highly symmetric:

Top-level Topology	Graph 1	Graph 2	Relabelling
			$p1 \rightarrow -p2$ $p2 \rightarrow -p1$ $p5 \rightarrow -p6$ $p6 \rightarrow -p5$ $p4 \rightarrow -p4$
		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$p1 \rightarrow p5$ $p5 \rightarrow p1$ $p2 \rightarrow -p2$ $p6 \rightarrow -p6$ $p3 \rightarrow -p4$ $p4 \rightarrow -p3$

Apply symmetries **before and after** large-*m*_t expansion.

Introduction	High-Energy Limit	Large-mt Limit		Conclusion
000	0000000	0000000		0
Joshua Davies, Go Mishima, Matthias S	teinhauser, David Wellmann – $gg \rightarrow HH$, high	+low en. limit N	Narch 13, 2019	18/20

Results

In progress: NNLO Padé approx in combination with threshold

c.f. NLO large-m _t + threshold approx		[Gröber,Maier,Rauh '18]		
Introduction 000	High-Energy Limit	Large- <i>m</i> t Limit ○○○○○○●		Conclusion O
Joshua Davies, Go Mishima, Matthi	as Steinhauser, David Wellmann -	- gg→HH, high+low en. limit	March 13, 2019	19/20

Conclusions

NLO:

- high-energy expansion gives information in previously-unknown region of phase space
- combine with other inputs to improve approximation of NLO virtual corrections

NNLO:

- additional terms in large-*m*t expansion computed
- combine with NNLO threshold expansion to approximate NNLO virtual corrections

Introduction 000	High-Energy Limit	Large- <i>m</i> t Limit 0000000		Conclusion •
Joshua Davies, Go Mishima, Matthias S	steinhauser, David Wellmann – gg $ ightarrow$ HH, high-	+low en. limit	March 13, 2019	20/20