N-Tuples and compact matrix element representations

Daniel Maître, IPPP Durham

ACAT 19, 13 March 2019

Plan

- nTuples
- NNLO ntuples
- Orthogonal functions for phasespace

n-Tuple files [arXiv:1310.7439]

High multiplicity NLO calculations are computationally intensive

- Matrix elements are expensive
- Jet clustering, observables, PDF evaluation are relatively cheap
- Store matrix element, PS point and the information necessary to change scales

NLO nTuple files [arXiv:1310.7439]

Advantages

- One can change the analysis cuts, add observables
- Cheap scale variation and PDF errors (otherwise extremely expensive)
- Easy communication between theorists and experimenters
- No need for specific know-how of the tool which produced the NLO calculation
- Easier to "endorse" an event file than a program
- Disadvantage
 - Large files
 - Generation cuts need to be loose enough to accommodate many analysis → efficiency cost

NNLO nTuple files

Trade offs

Compact Matrix element representations

nTuple file

A nTuple file is a weighted sample to represent the integral

$$\sigma = \int d\phi_n \frac{d\sigma}{d\phi} C(\phi)$$

- Where C is a set of cuts designed to be as inclusive as possible
- ϕ is the phasespace, and also include the integration over the PDFs for hadronic initial states
- For hadronic initial states we need to create new nTuples
 - For new collider energies
 - For different jet pt cuts

Compact representation

- Question: if calculating the differential cross section is the difficult part, how can I store as much information as possible about it in a way that I can reuse it more?
- I can try to represent the underlying probability density
 - Is it a probability density?
 - Yes at LO
 - Not at NLO
 - It should be for an infrared-safe observable
- Goal is to build a basis of phasespace functions that can build any infrared safe observable
- Consider 1 → n process (e+e-, Higgs decay)

Orthogonal PS function

- Let's introduce as set of orthonormal functions of phasespace
- The exact form of the parametrisation is not very relevant
 - Map coordinates to either [0,1] or [-1,1]
 - Arrange for flat Jackobian:

$$\int d\phi f(\phi) = \int dx_1 \cdots dx_k f(\phi(x_1, ..., x_k))$$

Use polynomial orthogonal basis

$$\int_{x_{min}}^{x_{max}} \Phi_i(x) \Phi_j(x) dx = \delta_{ij}$$

The basis function for the phasespace

$$\Phi_{i_1,...,i_k}(x_1,...,x_k) = \Phi_{i_1}^{(1)}(x_1)...\Phi_{i_k}^{(k)}(x_k)$$

Orthogonal PS function

 So we can now write any (reasonable) function of phasespace as

$$f(\phi) \approx \sum_{i_1, \dots, i_k} c_{i_1, \dots, i_k} \Phi_{i_1, \dots, i_k}(\phi)$$

- The number of indices corresponds to the number of free parameters (including azimuthal symmetry)
 - For 2 particle PS: 1
 - For 3 particle PS: 4
 - 3n-5 for n particle PS
- Becomes quickly too many dimensions (curse of dimensionality)

Coefficients

The coefficients are determined through integration over phasespace

$$c_{i_1,\dots,i_k} = \int d\phi \,\Phi_{i_1,\dots,i_k} f(\phi)$$

Using this representation we have

$$\sigma = \int d\phi_n \frac{d\sigma}{d\phi} C(\phi)$$

$$= \sum_{i_1, \dots, i_k} c_{i_1, \dots, i_k} \int d\phi_n \Phi_{i_1, \dots, i_k}(\phi) C(\phi)$$

$$= \sum_{i_1, \dots, i_k} c_{i_1, \dots, i_k} d_{i_1, \dots, i_k}$$

 Phase-space integration for matrix elements and cuts can be separated

Example

- e+e- → 3j LO
 - Fix centre of mass energy to 1
 - Require 3 jets using R=0.1 and transverse momentum 0.25
- The densities $\frac{d\sigma}{dx_i}$ in phase space look like this:

Estimate of the densities

- Calculate the coefficients for the density with 50 coefficients per dimension
- Reconstruct the density and compare with the histograms:

Observable

• Observables: bins in first jet transverse momentum

Reconstructed distribution

Here are the reconstructed histograms

Generating samples

- One advantage of having an approximation for the density is that we can draw samples from it
- We can use Gibbs sampling
 - Start somewhere and repeat the following algorithm
 - Given a point $X^i = (x_1^{(i)}, ... x_k^{(i)})$
 - Generate the next values for each coordinate \boldsymbol{x}_j successively according to the conditional probability

$$x_j^{(i+1)} \simeq P(x_j | x_1^{(i+1)}, ..., x_{j-1}^{(i+1)}, x_{j+1}^{(i)}, ..., x_k^{(i)})$$

Conditional probability

With our expression for the probability density

$$f(x_1, ..., x_k) = \sum_{i_1, ..., i_k} c_{i_1, ..., i_k} \Phi_{i_1}(x_1) \cdots \Phi_{i_k}(x_k)$$

it is easy to calculate the conditional probabilities

They are naturally expressed in terms of the basis functions

$$P(x_j|x_1,...,x_{j-1},x_{j+1},...,x_k) = \sum_j d_j \Phi_j(x_j)$$

with

$$d_{j} = \sum_{i_{1},...,i_{j-1},j,i_{j+1},...,i_{k}} \Phi_{i_{1}}(x_{1}) \cdots \Phi_{i_{j-1}}(x_{j-1})$$

$$\times \Phi_{i_{j+1}}(x_{j+1}) \cdots \Phi_{i_{k}}(x_{k})$$

Conditional probability

- In order to draw a new value for x_j we need the cumulative distribution of the conditional probability
- The good news is that it is very easy to perform integration in the orthonormal basis:
 - The primitive of the basis functions can be written in terms of the basis functions
 - Integration is simply a multiplication with a matrix than only needs to be calculated once.
 - For the polynomial basis used here the matrix is very sparse

Example

Conditional distribution

- Fluctuations come from:
 - Truncation of the basis function
 - Limited statistics in the matrix element integration

Unweighted events

Using the Gibbs sampling method we generate an unweighted sample:

Further work

- Lots to do:
 - Use more GPU
 - NLO/NNLO working example
 - Fix numerical issues
 - Polynomial basis chosen is not good with phase-space theta functions
 - Conditional probabilities not well constrained on phasespace boundaries
 - Hadronic example

Backup

nTuples for NNLO

nTuples for NNLO

- nTuples have proven useful for NLO
- Can they be as useful for NNLO?
- Same advantages and same disadvantages but amplified:
 - Programs are more complex
 - Larger files:
 - Many more pieces in the calculation
 - More logarithm coefficients
- Main question: is the size reasonable?

Implementation

LHAPDF impersonator

- Allows to alternate vanishing and real pdf to disentangle different pdf terms
- Allows to filter specific initial state
- Reports pdf arguments to the nTuple collector
- Allows to set coupling constant values to one
- Is implemented using a hacking technique so there is no need to modify either
 - the NNLO program
 - the LHAPDF code

Additional difficulties

- Caching can cause confusion when the order of pdf, alphas, cuts and histograms are perturbed.
- Need to avoid grid adaptation to ensure synchronisation of the threads

Error estimate

- Two sources of error:
 - Statistical uncertainty on the true value of the coefficients
 - Uncertainty in the matrix element and in the observable
 - This uncertainty can be estimated either
 - during the coefficient determination as a Monte-Carlo error
 - using sub-sampling techniques, with the advantage that correlations between errors are taken into account
 - Truncation error
 - Can be estimated by studying the stability of the prediction as a function of the depth of the expansion.

Coefficient uncertainties

Observable coefficients

Matrix elements coefficients

Truncation error

 We can estimate the truncation uncertainty by looking at the convergence as a function of the number of basis function

