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Plan

● nTuples 

● NNLO ntuples

● Orthogonal functions for phasespace
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n-Tuple files  [arXiv:1310.7439]

● High multiplicity NLO calculations are computationally 
intensive

● Matrix elements are expensive

● Jet clustering, observables, PDF evaluation are relatively 
cheap

● Store matrix element, PS point and the information 
necessary to change scales

Phase space generation Cuts/HistogramME calculation

PDF

Cuts/HistogramnTuple file

PDF

Phase space generation Cuts/HistogramME calculation

PDF

Cuts/HistogramnTuple file

PDF
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NLO nTuple files  [arXiv:1310.7439]

● Advantages

– One can change the analysis cuts, add observables
– Cheap scale variation and PDF errors (otherwise 

extremely expensive)
– Easy communication between theorists and 

experimenters
– No need for specific know-how of the tool which 

produced the NLO calculation
– Easier to “endorse” an event file than a program

● Disadvantage

– Large files
– Generation cuts need to be loose enough to 

accommodate many analysis → efficiency cost 
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NNLO nTuple files
● Trade offs

Larger                   File size                     smaller

more                   Generality                     less

more                   intrusive                     less

more                   Efficient                     less
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Compact Matrix element representations
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nTuple file
● A nTuple file is a weighted sample to represent the integral

● Where C is a set of cuts designed to be as inclusive as 
possible  

●     is the phasespace, and also include the integration over 
the PDFs for hadronic initial states

● For hadronic initial states we need to create new nTuples
– For new collider energies

– For different jet pt cuts
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Compact representation
● Question: if calculating the differential cross section is the 

difficult part, how can I store as much information as 
possible about it in a way that I can reuse it more?  

● I can try to represent the underlying probability density

– Is it a probability density?
● Yes at LO
● Not at NLO
● It should be for an infrared-safe observable

● Goal is to build a basis of phasespace functions that can 
build any infrared safe observable

● Consider 1→ n process (e+e-, Higgs decay)
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Orthogonal PS function
● Let’s introduce as set of orthonormal functions of phasespace 

● The exact form of the parametrisation is not very relevant

– Map coordinates to either [0,1] or [-1,1]

– Arrange for flat Jackobian:

– Use polynomial orthogonal basis

● The basis function for the phasespace 
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Orthogonal PS function
● So we can now write any (reasonable) function of phase-

space as 

● The number of indices corresponds to the number of free 
parameters (including azimuthal symmetry)

– For 2 particle PS: 1

– For 3 particle PS: 4

– n3 -5 for n particle PS

● Becomes quickly too many dimensions (curse of 
dimensionality)
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Coefficients
● The coefficients are determined through integration over 

phasespace

● Using this representation we have

● Phase-space integration for matrix elements and cuts can 
be separated
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Example
● e+e- → 3j LO

– Fix centre of mass energy to 1

– Require 3 jets using R=0.1 and transverse momentum 0.25

● The densities         in phase space look like this: 
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Estimate of the densities
● Calculate the coefficients for the density with 50 

coefficients per dimension 

● Reconstruct the density and compare with the histograms:
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Observable
● Observables: bins in first jet transverse momentum
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Reconstructed distribution
● Here are the reconstructed histograms
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Generating samples
● One advantage of having an approximation for the density 

is that we can draw samples from it

● We can use Gibbs sampling

– Start somewhere and repeat the following algorithm
● Given a point     

● Generate the next values for each coordinate xj successively 
according to the conditional probability 
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling



Saas Fee, 13th March 2019 23

Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Conditional probability
● With our expression for the probability density

 it is easy to calculate the conditional probabilities

● They are naturally expressed in terms of the basis 
functions

with
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Conditional probability
● In order to draw a new value for xj we need the cumulative 

distribution of the conditional probability

● The good news is that it is very easy to perform integration 
in the orthonormal basis:

– The primitive of the basis functions can be written in terms of 
the basis functions

– Integration is simply a multiplication with a matrix than only 
needs to be calculated once.

– For the polynomial basis used here the matrix is very sparse 
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Example
● Conditional distribution

● Fluctuations come from:

– Truncation of the basis function

– Limited statistics in the matrix element integration
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Unweighted events
● Using the Gibbs sampling method we generate an 

unweighted sample:
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Further work
● Lots to do:

– Use more GPU

– NLO/NNLO working example

– Fix numerical issues
● Polynomial basis chosen is not good with phase-space theta 

functions
● Conditional probabilities not well constrained on phasespace 

boundaries

– Hadronic example
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Backup
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nTuples for NNLO
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nTuples for NNLO
● nTuples have proven useful for NLO

● Can they be as useful for NNLO?

● Same advantages and same disadvantages but amplified:

– Programs are more complex

– Larger files:
● Many more pieces in the calculation
● More logarithm coefficients

● Main question: is the size reasonable?
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Implementation

PS point

LHAPDF

Cuts/Histogram

NNLO nTuple collector

Cuts/Histogram

Cuts/Histogram

NNLO Program

ME calculation

ME calculation

ME calculation

LHAPDF impersonator

LHAPDF impersonator

LHAPDF impersonator
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LHAPDF impersonator
● Allows to alternate vanishing and real pdf to disentangle 

different pdf terms

● Allows to filter specific initial state 

● Reports pdf arguments to the nTuple collector

● Allows to set coupling constant values to one

● Is implemented using a hacking technique so there is no 
need to modify either 

– the NNLO program

– the LHAPDF code   
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Additional difficulties
● Caching can cause confusion when the order of pdf, 

alphas, cuts and histograms are perturbed.

● Need to avoid grid adaptation to ensure synchronisation of 
the threads 
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Error estimate
● Two sources of error:

– Statistical uncertainty on the true value of the coefficients
● Uncertainty in the matrix element and in the observable
● This uncertainty can be estimated either

– during the coefficient determination as a Monte-Carlo error
– using sub-sampling techniques, with the advantage that 

correlations between errors are taken into account
– Truncation error 

● Can be estimated by studying the stability of the prediction as a 
function of the depth of the expansion. 
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Coefficient uncertainties
● Observable coefficients ● Matrix elements 

coefficients
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Truncation error
● We can estimate the truncation uncertainty by looking at 

the convergence as a function of the number of basis 
function
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