
ACAT 2019, Saas Fee (11-15 March 2019)

Parallelized Kalman-Filter-based Reconstruction
of Particle Tracks on Many-Core Architectures

with the CMS detector

11 March 2019

G. Cerati4, P. Elmer3, B. Gravelle5,
M. Kortelainen4, S. Krutelyov1, S. Lantz2,

M. Masciovecchio1, K. McDermott2, B. Norris5,
A. Reinsvold Hall4, D. Riley2, M. Tadel1, P. Wittich2,

F. Würthwein1, A. Yagil1

1. UCSD 2. Cornell 3. Princeton 4. FNAL 5. Oregon

Overview
2

o  Motivation

o  Introduction of parallelized Kalman Filter (KF) tracking
§  Aka. mkFit

o  Performance
§  Physics performance
§  Time performance

o  Plans & Summary

Mario Masciovecchio (UCSD), 11 March 2019

Project website:
http://trackreco.github.io/

Motivation
3

•  Exponential growth of CPU needs for
high pileup at LHC to be addressed, to
speed up event reconstruction

à Review tracking strategy

à Max utilization of computing resources
o  Many-core SIMD and SIMT arch’s

Mario Masciovecchio (UCSD), 11 March 2019

CMS event display from 2018 high PU (136) run

Kalman Filter
4

•  Kalman Filter technique consists of two steps:
1.  Produce an estimate of the current state (prediction)
2.  Update the state with the next measurement

•  Why use it for track track reconstruction:
o  Robust handling of multiple scattering, energy loss, and other

material effects
o  Widely used in HEP field
o  Demonstrated physics performance

•  Our goal:
o  Exploit parallel and vector architectures

à Improve computational performance
o  Maintain physics performance

Mario Masciovecchio (UCSD), 11 March 2019

Track building, in a nutshell
5

•  Track building is the primary focus of our project:

o  Start with a seed track (≤4 measurements)
§  Seed finding is out of our scope

o  Estimate track state from seed track

o  Propagate track state to next detector layer

o  Find candidate detector response “hits” near
projected intersection point(s) of track with layer

o  Evaluate goodness of fit for each hit, wrt. track

o  Select best fit track-hit combinations as track
candidates

o  Update estimated state of all track candidates
with new hit

o  Propagate all track candidates to next layer

à  Iterate

Mario Masciovecchio (UCSD), 11 March 2019

Track building

seed

The parallelized KF tracking project
6

•  Parallelized KF tracking project ongoing for 3+ years
à  Aim: implementation of traditional KF-based tracking, maximizing usage

of vector units and multicore architectures

•  R&D started in context of simplified geometry and simulation

•  Current focus on realistic geometry & events

à CMS detector geometry
à Realistic events from CMS simulation
à Seed tracks from CMS
à Integration in CMS software (CMSSW)

§  Aim: test online in LHC Run III @ High Level Trigger (HLT)
§  Will extend to HL-LHC and Phase-II CMS geometry

v Note: will refer to parallelized KF tracking as “mkFit”
à  Matriplex Kalman Finder/Fitter

Mario Masciovecchio (UCSD), 11 March 2019

CMS-2017 geometry
7 Mario Masciovecchio (UCSD), 11 March 2019

•  Geometry is implemented as a plugin
 Layer centroids

Layer size

(actual geometry used by mkFit)

•  Do not deal with detector modules,
only layers (unlike current CMSSW)
o  Algorithm is lighter & faster

à  Track propagation to center of layer,
then hit selection
o  Additional propagation step for

every compatible hit is required
(exploiting vectorization)

à  Mono/stereo modules are described
as separate layers

à  Can pick-up only one hit/layer during
outward propagation
o  Could pick-up overlap hits during

backward fit, or afterwards

(usual representation of geometry)

stripe = mono/stereo layers

The big mkFit picture
8

1.  Seed finding
o  For development, use either CMSSW seeds or MC truth seeding
o  For CMSSW seeds, apply cleaning prior to track finding
o  When employed @ CMS HLT, will use available seeds

2.  Track finding
à  Primary focus
o  First milestone: tracking with CMS-2017 geometry
o  4-hit pixel seeds with beam-spot constraint

3.  Track fitting
o  Can do track fitting within mkFit
o  However, rely on CMSSW for final fit

§  Most/more precise set of tools

4.  Validation
o  Physics performance
o  Time performance

Mario Masciovecchio (UCSD), 11 March 2019

Parallelization & vectorization
9 Mario Masciovecchio (UCSD), 11 March 2019

•  Task scheduling is handled via TBB library, by Intel

•  Parallelization at multiple levels
o  parallel-for: N events in flight

o  parallel-for: 5 regions in η in each event
o  parallel-for: seed-driven batching, 16 or 32 seeds per batch

à  Vectorized processing of candidates, where possible

•  Architectures:
o  KNL (64 physical cores, 256 logical cores)

§  Intel® Xeon Phi™ CPU 7210 @ 1.3 GHz, AVX512 support
o  SNB (12 physical cores, 24 logical cores)

§  Intel® Xeon® CPU E5-2620 0 @ 2 GHz, AVX2 (256) support
o  SKL (32 physical cores, 64 logical cores)

§  Intel® Xeon® Gold 6130 CPU @ 2.1 GHz, AVX512 support
o  Nvidia / CUDA (GPU) – to a limited extent

Runtime options
10 Mario Masciovecchio (UCSD), 11 March 2019

•  mkFit algorithm can be used in two different setups:

1.  Standalone code
o  Input: simple data-format, from memory dump of data structures

§  Hits, seeds, simulated and reconstructed tracks
o  Useful for development and validation of computing performance

2.  Integrated within CMSSW
o  Input: data are pulled from CMSSW event record

§  Format into mkFit data structures
§  After building, mkFit tracks are re-formatted into CMSSW tracks

o  mkFit is deployed as external package + CMSSW module

•  For both setups, test using CMSSW samples
o  10-μ samples – mainly for development
o  (PU=0, 50, 70) samples

t t

Physics performance
11 Mario Masciovecchio (UCSD), 11 March 2019

Physics performance: validations
12 Mario Masciovecchio (UCSD), 11 March 2019

•  Different validation suites are used for the two runtime options
o  Different choices and definitions to achieve different goals (next slide)

1.  mkFit validation: algorithm-level efficiency
o  Used for standalone configuration
o  Goal: validate physics performance on long (≥10 hits) tracks, wrt. CMSSW
o  Starting point to evaluate mkFit physics performance

2.  Multi-Track Validation (MTV): absolute efficiency
o  Used for mkFit integrated into CMSSW
o  Goal: evaluate absolute performance of tracking algorithm
o  Including seed building efficiency

•  Efficiency = fraction of reference tracks matched to a reconstructed track
•  Duplicate rate = fraction of reference tracks matched to >1 reconstructed track
•  Fake rate = fraction of reconstructed tracks not matched to any reference track

Validation definitions
13 Mario Masciovecchio (UCSD), 11 March 2019

mkFit efficiency: mkFit validation
14 Mario Masciovecchio (UCSD), 11 March 2019

•  (PU=70)
o  Algorithm-level efficiency, for long tracks
à mkFit is at least as efficient as CMSSW

t t

mkFit efficiency: MTV
15 Mario Masciovecchio (UCSD), 11 March 2019

•  (PU=50)
o  Absolute efficiency of full tracking algorithm (including seeding)
t t

mkFit
mkFit + test
CMSSW

0.

0.

layers

à  mkFit is as efficient as CMSSW standard
tracking for tracks with ≥12 layers
o  As observed in previous slide

à  Inefficiency at shorter track lengths has been
understood. Work in progress.
o  Run a test to confirm hypothesis about

inefficiency for shorter tracks
§  “Feature” of ranking of candidates

o  Test confirms hypothesis is correct
o  Working on permanent solution

0.

Time performance
16 Mario Masciovecchio (UCSD), 11 March 2019

Time performance: integrated into CMSSW
17 Mario Masciovecchio (UCSD), 11 March 2019

•  Time performance of mkFit when
integrated into CMSSW, vs. CMSSW
o  For corresponding tracking step
o  N(threads) =1; N(streams) =1
o  Using (PU=50)
o  Test on SKL-SP Gold
o  mkFit compiled with AVX512

à Track building is 4.4x faster (mkFit)
o  mkFit time currently accounts for

data-format conversions
§  ~40% ⇒ Actually ≳ 7x faster

o  mkFit gets faster with # threads

Ø  Can only improve from here

t t

Time performance: integrated into CMSSW (ii)
18 Mario Masciovecchio (UCSD), 20 February 2019

à Track building for mkFit is faster
than track fitting (unlike CMSSW)
o  Fake and duplicate rates are higher

Ø  Larger amount of tracks to be fitted

Ø  Will need dedicated “final” cleaning
§  Work in progress.

Speed-up vs. # threads
19 Mario Masciovecchio (UCSD), 20 February 2019

•  (PU=70), using standalone configuration on SKL-SP Gold
o  Speed-up vs. # threads for track building
à Excellent scaling at low # threads

t t

Plans
20 Mario Masciovecchio (UCSD), 11 March 2019

•  Continue working on integration into CMSSW
o  Optimize conversion between data formats

•  Implement final track cleaning & quality selection
o  To minimize duplicate & fake rates in mkFit
o  Without it, fit on mkFit tracks takes longer than CMSSW

§  Due to larger amount of duplicate and fake tracks

•  Explore GPU-based implementation (not covered today)

•  Goal: deploy into CMSSW and test (online, @ HLT) in LHC Run III
•  Longer term: extend to Phase-II CMS geometry, for HL-LHC

Summary
21 Mario Masciovecchio (UCSD), 11 March 2019

•  Status of parallelized KF tracking (aka. mkFit) is well advanced

o  As well as its integration into CMSSW

•  First round of physics performance optimization in mkFit resulted
in equivalent or better efficiency than CMSSW for long tracks

o  Current work on improving performance for shorter tracks

•  Already observe ~4.4x speed-up wrt. CMSSW, when running
within CMSSW (without optimization of data-format conversion)

•  Further development is on-going to deliver “final” tracks

•  Performance expected to be mostly useful @ HLT, or even offline
(possibly already during LHC Run III)

Backup
22 Mario Masciovecchio (UCSD), 11 March 2019

Data structure: Matriplex
23

•  “Matrix-major” matrix representation designed to fill vector unit
with n small matrices operated on in synchronization

Mario Masciovecchio (UCSD), 11 March 2019

Track building: challenges
24

•  Good physics performance (efficiency) requires consideration of
multiple track hypotheses
o  In a dense detector geometry, many tracks will find hit candidates that are

the best local fit, but lead to a globally poor fit
à  Consider many track hypotheses for every seed, depending on occupancy

•  Track building involves multiple branch points
o  Select candidate hits at each layer
o  Evaluate a variable number of track candidate-hit candidate combinations
o  Select best combinations for propagation to next layer
o  A number of seeds “die” out after few few layers

à Lead to irregular work loads and memory access patterns

Mario Masciovecchio (UCSD), 11 March 2019

Key differences: mkFit vs. CMSSW
25 Mario Masciovecchio (UCSD), 11 March 2019

mkFit duplicate rate: mkFit validation
26 Mario Masciovecchio (UCSD), 11 March 2019

•  (PU=70) t t

mkFit fake rate: mkFit validation
27 Mario Masciovecchio (UCSD), 11 March 2019

•  (PU=70) t t

