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Overview 
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o  Motivation 
 

o  Introduction of parallelized Kalman Filter (KF) tracking 
§  Aka. mkFit 

o  Performance 
§  Physics performance 
§  Time performance 

o  Plans & Summary 

Mario Masciovecchio (UCSD), 11 March 2019 

Project website: 
http://trackreco.github.io/  



Motivation 
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•  Exponential growth of CPU needs for 
high pileup at LHC to be addressed, to 
speed up event reconstruction 

à Review tracking strategy  

à Max utilization of computing resources 
o  Many-core SIMD and SIMT arch’s 

Mario Masciovecchio (UCSD), 11 March 2019 

CMS event display from 2018 high PU (136) run   



Kalman Filter 
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•  Kalman Filter technique consists of two steps: 
1.  Produce an estimate of the current state (prediction) 
2.  Update the state with the next measurement 

•  Why use it for track track reconstruction: 
o  Robust handling of multiple scattering, energy loss, and other 

material effects 
o  Widely used in HEP field 
o  Demonstrated physics performance 

•  Our goal: 
o  Exploit parallel and vector architectures 

à Improve computational performance 
o  Maintain physics performance 

Mario Masciovecchio (UCSD), 11 March 2019 



Track building, in a nutshell 
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•  Track building is the primary focus of our project: 

o  Start with a seed track (≤4 measurements) 
§  Seed finding is out of our scope 

o  Estimate track state from seed track 

o  Propagate track state to next detector layer 

o  Find candidate detector response “hits” near 
projected intersection point(s) of track with layer 

o  Evaluate goodness of fit for each hit, wrt. track 

o  Select best fit track-hit combinations as track 
candidates 

o  Update estimated state of all track candidates 
with new hit 

o  Propagate all track candidates to next layer 

à  Iterate 

Mario Masciovecchio (UCSD), 11 March 2019 

Track building 

seed 



The parallelized KF tracking project 
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•  Parallelized KF tracking project ongoing for 3+ years 
à  Aim: implementation of traditional KF-based tracking, maximizing usage 

of vector units and multicore architectures 
 

•  R&D started in context of simplified geometry and simulation 

•  Current focus on realistic geometry & events 
 

à CMS detector geometry 
à Realistic events from CMS simulation 
à Seed tracks from CMS 
à Integration in CMS software (CMSSW) 

§  Aim: test online in LHC Run III @ High Level Trigger (HLT) 
§  Will extend to HL-LHC and Phase-II CMS geometry 

 
 

v Note: will refer to parallelized KF tracking as “mkFit” 
à  Matriplex Kalman Finder/Fitter 

Mario Masciovecchio (UCSD), 11 March 2019 



CMS-2017 geometry 
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•  Geometry is implemented as a plugin 
 Layer centroids 

Layer size 

(actual geometry used by mkFit) 

•  Do not deal with detector modules, 
only layers (unlike current CMSSW) 
o  Algorithm is lighter & faster 
 

à  Track propagation to center of layer, 
then hit selection 
o  Additional propagation step for 

every compatible hit is required 
(exploiting vectorization) 

 

à  Mono/stereo modules are described 
as separate layers 

 

à  Can pick-up only one hit/layer during 
outward propagation 
o  Could pick-up overlap hits during 

backward fit, or afterwards 

(usual representation of geometry) 

stripe = mono/stereo layers 



The big mkFit picture 
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1.  Seed finding 
o  For development, use either CMSSW seeds or MC truth seeding 
o  For CMSSW seeds, apply cleaning prior to track finding 
o  When employed @ CMS HLT, will use available seeds 

2.  Track finding 
à  Primary focus 
o  First milestone: tracking with CMS-2017 geometry 
o  4-hit pixel seeds with beam-spot constraint 

3.  Track fitting 
o  Can do track fitting within mkFit 
o  However, rely on CMSSW for final fit 

§  Most/more precise set of tools 

4.  Validation 
o  Physics performance 
o  Time performance 

Mario Masciovecchio (UCSD), 11 March 2019 



Parallelization & vectorization 
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•  Task scheduling is handled via TBB library, by Intel 

•  Parallelization at multiple levels 
o  parallel-for: N events in flight 

o  parallel-for: 5 regions in η in each event 
o  parallel-for: seed-driven batching, 16 or 32 seeds per batch 

à  Vectorized processing of candidates, where possible  
 

•  Architectures: 
o  KNL (64 physical cores, 256 logical cores) 

§  Intel® Xeon Phi™ CPU 7210 @ 1.3 GHz, AVX512 support 
o  SNB (12 physical cores, 24 logical cores) 

§  Intel® Xeon® CPU E5-2620 0 @ 2 GHz, AVX2 (256) support 
o  SKL (32 physical cores, 64 logical cores) 

§  Intel® Xeon® Gold 6130 CPU @ 2.1 GHz, AVX512 support 
o  Nvidia / CUDA (GPU) – to a limited extent 



Runtime options 
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•  mkFit algorithm can be used in two different setups: 

1.  Standalone code 
o  Input: simple data-format, from memory dump of data structures 

§  Hits, seeds, simulated and reconstructed tracks 
o  Useful for development and validation of computing performance 

2.  Integrated within CMSSW 
o  Input: data are pulled from CMSSW event record 

§  Format into mkFit data structures 
§  After building, mkFit tracks are re-formatted into CMSSW tracks 

o  mkFit is deployed as external package + CMSSW module 
 

•  For both setups, test using CMSSW samples 
o  10-μ samples – mainly for development 
o       (PU=0, 50, 70) samples 

 
t t



Physics performance 
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Physics performance: validations 
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•  Different validation suites are used for the two runtime options 
o  Different choices and definitions to achieve different goals (next slide) 

1.  mkFit validation: algorithm-level efficiency 
o  Used for standalone configuration 
o  Goal: validate physics performance on long (≥10 hits) tracks, wrt. CMSSW 
o  Starting point to evaluate mkFit physics performance 

2.  Multi-Track Validation (MTV): absolute efficiency 
o  Used for mkFit integrated into CMSSW 
o  Goal: evaluate absolute performance of tracking algorithm 
o  Including seed building efficiency 

•  Efficiency = fraction of reference tracks matched to a reconstructed track 
•  Duplicate rate = fraction of reference tracks matched to >1 reconstructed track 
•  Fake rate = fraction of reconstructed tracks not matched to any reference track 



Validation definitions 
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mkFit efficiency: mkFit validation 
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•      (PU=70) 
o  Algorithm-level efficiency, for long tracks 
à mkFit is at least as efficient as CMSSW 

t t



mkFit efficiency: MTV 
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•      (PU=50) 
o  Absolute efficiency of full tracking algorithm (including seeding) 
t t

mkFit 
mkFit + test 
CMSSW 

0. 

0. 

# layers 

à   mkFit is as efficient as CMSSW standard 
tracking for tracks with ≥12 layers 
o  As observed in previous slide 

 

à  Inefficiency at shorter track lengths has been 
understood. Work in progress. 
o  Run a test to confirm hypothesis about 

inefficiency for shorter tracks 
§  “Feature” of ranking of candidates 

o  Test confirms hypothesis is correct 
o  Working on permanent solution 

0. 



Time performance 
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Time performance: integrated into CMSSW 
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•  Time performance of mkFit when 
integrated into CMSSW, vs. CMSSW 
o  For corresponding tracking step 
o  N(threads) =1;  N(streams) =1 
o  Using      (PU=50) 
o  Test on SKL-SP Gold 
o  mkFit compiled with AVX512 

à Track building is 4.4x faster (mkFit) 
o  mkFit time currently accounts for 

data-format conversions   
§  ~40% ⇒ Actually ≳ 7x faster 

o  mkFit gets faster with # threads  
 

Ø  Can only improve from here 

t t



Time performance: integrated into CMSSW (ii) 
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à Track building for mkFit is faster 
than track fitting (unlike CMSSW) 
o  Fake and duplicate rates are higher 

Ø  Larger amount of tracks to be fitted 

Ø  Will need dedicated “final” cleaning  
§  Work in progress. 



Speed-up vs. # threads 
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•       (PU=70), using standalone configuration on SKL-SP Gold 
o  Speed-up vs. # threads for track building 
à Excellent scaling at low # threads 

t t



Plans 
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•  Continue working on integration into CMSSW 
o  Optimize conversion between data formats 

 

•  Implement final track cleaning & quality selection 
o  To minimize duplicate & fake rates in mkFit 
o  Without it, fit on mkFit tracks takes longer than CMSSW 

§  Due to larger amount of duplicate and fake tracks 

•  Explore GPU-based implementation (not covered today) 
 

•  Goal: deploy into CMSSW and test (online, @ HLT) in LHC Run III 
•  Longer term: extend to Phase-II CMS geometry, for HL-LHC 



Summary 
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•  Status of parallelized KF tracking (aka. mkFit) is well advanced 

o  As well as its integration into CMSSW 

•  First round of physics performance optimization in mkFit resulted 
in equivalent or better efficiency than CMSSW for long tracks 

o  Current work on improving performance for shorter tracks 
 

•  Already observe ~4.4x speed-up wrt. CMSSW, when running 
within CMSSW (without optimization of data-format conversion) 

•  Further development is on-going to deliver “final” tracks 

•  Performance expected to be mostly useful @ HLT, or even offline 
(possibly already during LHC Run III) 

 



Backup 
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Data structure: Matriplex 
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•  “Matrix-major” matrix representation designed to fill vector unit 
with n small matrices operated on in synchronization 

Mario Masciovecchio (UCSD), 11 March 2019 



Track building: challenges 
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•  Good physics performance (efficiency) requires consideration of 
multiple track hypotheses 
o  In a dense detector geometry, many tracks will find hit candidates that are 

the best local fit, but lead to a globally poor fit 
à  Consider many track hypotheses for every seed, depending on occupancy 

•  Track building involves multiple branch points 
o  Select candidate hits at each layer 
o  Evaluate a variable number of track candidate-hit candidate combinations 
o  Select best combinations for propagation to next layer 
o  A number of seeds “die” out after few few layers 

à Lead to irregular work loads and memory access patterns 
 

Mario Masciovecchio (UCSD), 11 March 2019 



Key differences: mkFit vs. CMSSW 
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mkFit duplicate rate: mkFit validation 
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•      (PU=70) t t



mkFit fake rate: mkFit validation 
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•      (PU=70) t t


