Particle-GAN for Full Event Simulation at the LHC

Thong Nguyen¹

in collaboration with

Jesus Arjona Martinez², Maurizio Pierini³, Maria Spiropulu¹, and Jean-Roch Vlimant¹

¹Caltech ²Cambridge

3CERN

19th International Workshop on Advanced Computing and Analysis Techniques in Physics Research 12th March 2019. Saas-Fee, Switzerland

Generative Adversarial Networks (GANs)

- Zero-sum non-cooperative game between a forger (generator) and a detective (discrimator).
- Solution: Nash's equilibrium to the objective function:

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

GANs at the LHC

LAGAN (arXiv:1701.05927)

CaloGAN (arXiv:1712.10321)

GAN for hadronic jets (arXiv:1805.00850)

GAN for fast calo sim (arXiv:1812.01319)

GAN for QCD factorization (arXiv:1903.02556)

DijetGAN (arXiv:1903.02433)

Analysis-specific GAN (arXiv:1901.05282)

GANs at the LHC

LAGAN (arXiv:1701.05927)

GAN for hadronic jets (arXiv:1805.00850)

GAN for fast calo sim (<u>arXiv:1812.01319</u>)

CaloGAN (arXiv:1712.10321)

- Using high level features.
- Analysis specific.

GAN for QCD factorization (arXiv:1903.02556)

DijetGAN (arXiv:1903.02433)

Analysis-specific GAN (arXiv:1901.05282)

GANs at the LHC

Particle-GAN

- Generating list of particles mimicking particle-flow candidates to be used directly by reconstruction algorithms.
 - Speed up fullsim.
 - Improve fastsim.
- Analysis-independent.
- Starting with MinBias event simulation, each PF candidate represented by (p_T, η, φ).
 - Possible use case: generate per-event pileup.

Pile-up at the LHC

- Pileup: Low energy interactions simultaneous with interesting hard interaction in one event.
- Realistic simulation:
 - Classical PU: expensive computation.
 - Premix PU library: **heavy cost** on network/IO, **limitation** on flexibility of simulation conditions.
 - GAN: ~zero cost.

Dataset

Baseline P-GAN

Generator Architecture

Discriminator Architecture

- A physics layer maximizes the information given to the discriminator.
- Minibatch discrimination and feature matching to avoid mode collapse.

Evaluation Metrics

Least-square GAN:

$$\begin{split} \min_{D} V_{\text{\tiny LSGAN}}(D) = & \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{\tiny data}}(\boldsymbol{x})} \big[(D(\boldsymbol{x}) - 1)^2 \big] + \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \big[(D(G(\boldsymbol{z})))^2 \big] \\ \min_{G} V_{\text{\tiny LSGAN}}(G) = & \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \big[(D(G(\boldsymbol{z})) - 1)^2 \big], \end{split}$$

- Performance metrics:
 - Fox-Wolfram moments
 - Sphericity
 - Aplanarity
 - Global transverse thrust
 - Missing transverse energy
- Wasserstein distances between distributions of real and fake events over above metrics are used to evaluate the model.

Training Process

Evaluation metrics vs epochs. Model with lowest average value (black line) is chosen.

Performances

Performances

Conditional P-GAN

Learning to conserve event kinematics

Generator Architecture

Discriminator Architecture

Additional regression term to the loss functions

$$\mathscr{L}_{MET} = E_{z \sim p(z), E_T \sim data}[\Delta(E_T, \hat{E}_T(G(z|E_T)))] + E_{x \sim data}[\Delta(E_T(x), \hat{E}_T(x))]$$

Performances

Performance Comparison

Conditional P-GAN Density of samples In(GAN/GT) •!!!i•. 0.005 0.010 0.015 0.020 0.025 of samples Density In(GAN/GT) 0.002 0.003 0.004 0.006 0.007 Aplanarity of samples 10-In(GAN/GT)

Improvements on event kinematic conservation.

Summary

- We investigate a potential use case of generative adversarial networks for particle-based full event simulation at the LHC.
- Work in progress: There are still challenges for achieving precision in global kinematic reconstruction and some particle-feature distributions.
 - By exploiting smarter network architectures, we **reduce** significant discrepancy in certain kinematic phase spaces.
 - More work needs to be done to achieve a full-event fastsim solution with deep neural networks.

BACKUP

Pileup Subtraction

- Pileup removal: subtract soft radiation from QCD.
 - More relevant to physics analysis at the LHC.
- Apply SoftKiller algorithm to $Z \rightarrow \nu \nu$ sample with and without pileup emulation at $\bar{n}_{PU} = 20$.

Mean leading jet p_T

	$\langle p_T \rangle$ / GeV
No PU	136.8
Pileup - GT	146.6
Pileup - RGAN	141.1
Pileup - GT - subtracted	135.0
Pileup - RGAN - subtracted	135.7

 After pileup subtraction, average leading jet p_T generated with Pythia and RGAN agree within 0.7 GeV.

Computational Benchmark

- RGAN inference time: 3.19 ms per event (single thread Intel® Xeon® CPU E5-2650 v4 @ 2.2 GHz.
- Average simulation time: O(100s) per event^[1].
- Improvement by a factor of 10⁵.

GAN Evaluation

- Loss functions can't be used to benchmark GAN's performance.
- Wasserstein/Earth mover's distance: the minimum work (stuff x distance) to rearrange one pile of dirt into another.

 Use Wasserstein distances of different metrics between real and generated event distributions to evaluate the best model.