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Generative Adversarial 
Networks (GANs)

• Zero-sum non-cooperative game between a forger 
(generator) and a detective (discrimator).


• Solution: Nash’s equilibrium to the objective function:
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GANs at the LHC
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GANs at the LHC
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DijetGAN (arXiv:1903.02433) Analysis-specific GAN 

(arXiv:1901.05282)

GAN for QCD factorization

(arXiv:1903.02556)

• Using high level features. 
• Analysis specific.
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GANs at the LHC
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DijetGAN (arXiv:1903.02433) Analysis-specific GAN 

(arXiv:1901.05282)

GAN for QCD factorization

(arXiv:1903.02556)

• Particle-based, generating images. 
• Can’t be used for reconstruction.

CaloGAN (arXiv:1712.10321)

LAGAN 

(arXiv:1701.05927)

GAN for fast calo sim 

(arXiv:1812.01319)GAN for hadronic jets 


(arXiv:1805.00850)
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Particle-GAN
• Generating list of particles mimicking particle-flow 

candidates to be used directly by reconstruction algorithms.


- Speed up fullsim.


- Improve fastsim.


• Analysis-independent.


• Starting with MinBias event simulation, each PF candidate 
represented by (pT, η, φ).


- Possible use case: generate per-event pileup.
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Pile-up at the LHC

• Pileup: Low energy interactions simultaneous with interesting hard 
interaction in one event.


• Realistic simulation:

• Classical PU: expensive computation.

• Premix PU library: heavy cost on network/IO, limitation on flexibility of 

simulation conditions. 

• GAN: ~zero cost.
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Dataset
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PYTHIA8 DELPHES 
w/ particle flow

Charged 
Particles

Photons

Neutral 
Hadrons

Per-event  
pileup contribution 

n ̅= 20

MinBias CMS Phase II  
Detector Description



Baseline P-GAN
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Generator Architecture
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η generation layers are pretrained in 
separated networks then inserted into the 

GAN generator.
Dense



Discriminator Architecture

• A physics layer maximizes the information given to the discriminator.


• Minibatch discrimination and feature matching to avoid mode collapse. 
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• Performance metrics:


• Fox-Wolfram moments

• Sphericity

• Aplanarity

• Global transverse thrust

• Missing transverse energy


• Wassserstein distances between distributions of real and fake events over 
above metrics are used to evaluate the model.

Evaluation Metrics
• Least-square GAN:
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Training Process
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Evaluation metrics vs epochs. Model with lowest average value (black line) is chosen.

Early epoch

Optimal model



Performances
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Performances
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Event kinematics are not 
conserved. 

Can the networks learn 
the global kinematics?



Conditional P-GAN
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Learning to conserve event kinematics



Generator Architecture

!17

Dense

Event MET Rescale

• Generated events are conditioned on 
requested MET.

- Most important in physics analysis.

- Model selection still based on average 

metrics rather than MET alone.


• Training data are transformed s.t. φMET = 0.



Discriminator Architecture
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Event MET

Σ METCharged ΣpT,px,py

Photons ΣpT,px,py

Hadrons ΣpT,px,py

Σ HT

Minibatch 
discrimination

Δ > ε?

Reconstructed MET

Additional regression term to the loss functions

ℒMET = Ez~p(z), ET~data[Δ(ET, ÊT(G(z|ET)))] + Ex~data[Δ(ET(x), ÊT(x))]



Performances
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Performance Comparison

• Improvements on event kinematic conservation.!20

Baseline P-GAN Conditional P-GAN



Summary

• We investigate a potential use case of generative adversarial 
networks for particle-based full event simulation at the LHC.


• Work in progress: There are still challenges for achieving 
precision in global kinematic reconstruction and some 
particle-feature distributions.


• By exploiting smarter network architectures, we reduce 
significant discrepancy in certain kinematic phase spaces. 


• More work needs to be done to achieve a full-event fastsim 
solution with deep neural networks.
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BACKUP
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Pileup Subtraction
• Pileup removal: subtract soft radiation from QCD. 

• More relevant to physics analysis at the LHC.


• Apply SoftKiller algorithm to Z→νν sample with and without pileup emulation 
at n̅PU = 20.
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Before SoftKiller After SoftKiller Mean leading jet pT

• After pileup subtraction, average leading jet pT generated with Pythia and 
RGAN agree within 0.7 GeV.



Computational Benchmark

• RGAN inference time: 3.19 ms per event (single thread 
Intel® Xeon® CPU E5-2650 v4 @ 2.2 GHz.


• Average simulation time: O(100s) per event[1].


• Improvement by a factor of 105.

!24 [1] https://arxiv.org/pdf/1903.02433.pdf



GAN Evaluation
• Loss functions can’t be used to benchmark GAN’s performance.


• Wasserstein/Earth mover’s distance: the minimum work (stuff x distance) 
to rearrange one pile of dirt into another.
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• Use Wasserstein distances of different metrics between real and 
generated event distributions to evaluate the best model. 


