Incorporation of Systematic Uncertainties in the Training of Multivariate Methods

Thomas Alef & Eckhard von Törne, University of Bonn

ACAT 2019 March $13^{\rm th}$, 2019

Motivation and Goal

- Modern analysis often limited by systematic uncertainties
 - \Rightarrow make multivariate methods robust against systematics
- Systematic aware Boosted Decision Trees (saBDT) developed during Masterthesis
 - Based on AdaBoost/Gini Index BDTs from TMVA
 - o Tested on modified public data from Kaggle Higgs Challenge
- Compared with Adversarial Neural Networks (AdvNN)
- AdvNN based on KERAS

Public Data from Kaggle Higgs Challenge

- \circ Data from Kaggle Higgs Challenge H o au au
- 30 variables
- Training: 120,000 events (Kaggle challenge public data)
- Evaluation: 550,000 events (Kaggle challenge private data)
- For testing influence of systematics a systematic variation was added

Implementation of Systematic Variation

- Jet Energy Scale chosen as example systematic standard ATLAS systematic
- Strength of systematic variation: 1% (ATLAS standard value 1-4%)
- Scale jet energies up by 1%
 - \rightarrow recalculate all variables based on jet energies with new values
 - \rightarrow new systematic varied Up dataset
- Repeat with scaling down by 1%
- o ⇒ 3 Datasets: *Nominal*, *Up*, *Down*

Evaluation Metric: AAMS

- Kaggle Challenge used Approximate Median Significance (AMS)
- Adding systematic uncertainty: Advanced Approximate Median Significance (AAMS) (see hal-01208587)
- \circ Cut and Count approach: events with higher score than x are classified signal

$$AAMS = \sqrt{2\left((s+b)\ln\frac{s+b}{b_0} - s - b + b_0\right) + \frac{(b-b_0)^2}{\sigma_b^2}}$$

$$b_0 = \frac{1}{2}\left(b - \sigma_b^2 + \sqrt{(b - \sigma_b^2)^2 + 4(s+b)\sigma_b^2}\right)$$

- o s signal events, b background events, σ_b background difference on the different data sets
- Unstable for small $b \rightarrow \mathsf{add}$ a regularization term of 10 to b
- Maximum of σ_b for all possible cut values: σ_b^{max} \Rightarrow if small, method behaves similar on varied datasets

How to make BDTs aware of Systematics

- BDT uses all three datasets during training
- If performance similar on all three datasets invariant under systematic variations
- Similar behavior checked for:
 - Every single node split
 - Whole tree (Boostweight)
- AdaBoost BDT with Gini Index on ROOT 6.10/06
- NTrees=1000, MinNodeSize=1%, AdaBoost=0.2

BDT: Standard Node Split

So far: scan through all variables and possible cuts, maximize:

$$Gain = G_{Parent} - G_{Left} - G_{Right}$$

with Gini Index $G=p\cdot (1-p)$ (maximal for p=0.5) and $p=rac{N_{ ext{Signal}}}{N_{ ext{All}}}$

Basically: find the cut which improves the purity of the nodes the most

saBDT: Systematic Aware Node Split

- o Modify Gain to penalize differing behavior on different data sets
- Modification based on purity to stay consistent
- Subtract a term accounting for purity differences on different data sets:

$$\textit{NewGain} = \textit{Gain} - \lambda_{\textit{Cut}} \cdot \frac{1}{8} \cdot \sqrt{\sum_{\textit{Left}, \textit{Right}} \left(p_{\textit{Reg}} - p_{\textit{Up}, \textit{Down}}\right)^2}$$

- o λ_{Cut} as hyperparameter to control strength of invariance
- Penaltyterm can be between 0 and 0.25

saBDT: λ_{Cut} Hyperparameter Scan Results

- ${\rm \circ}\,$ Stable AAMS with possible increase for low $\lambda_{\rm Cut}$
 - ⇒ Algorithm works!
- o $\sigma_b^{\rm max}$ decreases performance similar on different datasets

saBDT: Systematic Aware Treeweight

Every decisiontree is weighted according to its error rate:

$$err = \frac{N_{\text{misidentified}}}{N_{\text{AII}}} \Rightarrow TW = \log \frac{1 + err}{1 - err}$$

- TW is the boostweight, high when tree performing well
- Multiply factor accounting for differences on systematic varied samples:

$$\textit{NewTW} = \textit{TW} \cdot \exp\left(-\lambda_{\textit{Boost}} \cdot \frac{\sum_{\mathsf{Up},\mathsf{Down}} \left(\textit{err}_{\mathsf{Reg}} - \textit{err}_{\mathsf{Up},\mathsf{Down}}\right)^2}{2}\right)$$

- o λ_{Boost} as hyperparameter
- New factor pulls down weight of trees affected by systematic variation

saBDT: λ_{Boost} Hyperparameter Scan Results

- AAMS (performance) drops for high λ_{Boost}
- Influence of systematics decreases as well!
- Stable region with possible increase for low values

saBDTs: 2-Dim Hyperparameter Scan

- \circ Scanning through λ_{Cut} and λ_{Boost} reveals increasing AAMS
- o Confirmed by Bootsstrap: 82.1% chance it is not a statistical fluctuation

saBDT: Different Strength of Systematic Variation

Different strength in systematic variation of data is applied

Systematic Variation	BDT (AAMS)	saBDT (AAMS)	% no stat. Fluc.
20%	1.07 ± 0.05	1.52±0.06	98.4%
10%	1.38 ± 0.06	$1.94{\pm}0.07$	99.6%
3%	2.40 ± 0.09	$2.64{\pm}0.09$	92.3%
1%	3.13 ± 0.11	$3.22{\pm}0.10$	82.1%

- 3% and 1% ATLAS standard values
- o saBDTs improves result especially well with strong systematic variation
- \bullet Result dominated by systematic uncertainty in this region \to decreasing systematic uncertainty more valuable

Adversarial Neural Networks

- As comparison AdvNN (see Louppe, Kagan, Cranmer: arXiv:1611.01046)
- Multiple talks during the next days
- Classifier able to distinguish signal and background
- o Adversary penalizing Classifier if it is sensitive to systematic variations
- \circ γ as strength parameter for penalty

saBDTs vs AdvNNs

- Comparison for 1% systematic variation
- saBDT performs slightly better!

AdvNN not fully optimized

- Maximal AAMS(saBDT) = 3.23 ± 0.10 , AAMS(AdvNN) = 3.08 ± 0.11
- Thomas Alef & Eckhard von Törne, University of Bonn

Conclusion and Outlook

Conclusion

- saBDTs proved capable of reducing systematic uncertainty
- Gain in AAMS was achieved
- AdvNNs were outperformed
- AdvNNs less optimized than saBDTs difference originating from this?
- Invariance proved to be most valuable for high systematic effects

Outlook

- saBDTs tested with different systematics
- New metrics to test the performance
- Multiple systematics at once?

Backup

saBDT: Node Split BDT Distribution

saBDT: Boost BDT Distribution

- Distributions behave similar to λ_{Cut}
- Getting shifted to the left

saBDT: AAMS

-0.2

0

0.2

-0.8

-0.6

0.4

0.6

0.8 Cut

Adversarial Neural Networks

Used AvdNN

• Classifier:

- o 30 input nodes, one for every variable
- \circ 3 dense hidden layers, regularized by l1 = 0.0001 and l2 = 0.001
- o 120 nodes each
- Activation function is relu for the hidden layers
- 1 output note, with sigmoid as activation function
- batch size is 64

Adversary:

- 1 input node
- 3 dense hidden layers
- The first two hidden layers have 30 nodes each and the last with 12
- o Activation function is relu for the hidden layers
- 3 output nodes, with softmax as activation

Variables

Variable	Comment	
DER_mass_MMC	effect but hard to calculate – neglected	
DER_mass_transverse_met_lep	If mEt is affected here as well	
DER_mass_vis	not affected	
DER_pt_h	If mEt is affected here as well	
DER_deltaeta_jet_jet	not affected	
DER_mass_jet_jet	directly affected	
DER_prodeta_jet_jet	not affected	
DER_deltar_tau_lep	not affected	
DER_pt_tot	directly affected	
DER_sum_pt	directly affected	
DER_pt_ratio_lep_tau	not affected	
DER_met_phi_centrality	If mEt is affected here as well	
DER_lep_eta_centrality	not affected	
PRI_tau_pt	not affected	
PRI_tau_eta	not affected	
PRI_tau_phi	not affected	
PRI_lep_pt	not affected	
PRI_lep_eta	not affected	
PRI_lep_phi	not affected	
PRI_met	affected similar to jet energy	
PRI_met_phi	not affected	
PRI_met_sumet	directly affected	
PRI_jet_num	not affected	
PRI_jet_leading_pt	directly affected	
PRI_jet_leading_eta	not affected	
PRI_jet_leading_phi	not affected	
PRI_jet_subleading_pt	directly affected	
PRI_jet_subleading_eta	not affected	
PRI_jet_subleading_phi	not affected	
PRI_jet_all_pt	directly affected	

saBDT: systematic aware node split results

- AAMS (performance) drops initially with λ_{Cut}
- Influence of systematics decreases as well!
- Breakdown around $\lambda_{\mathsf{Cut}} = 0.01$

saBDT: λ_{Boost} Hyperparameter Scan Results

- AAMS (performance) drops for high λ_{Boost}
- Influence of systematics decreases as well!
- Stable region with possible increase for low values

Overview of AMS/AAMS Results

Method	AMS	AAMS
Kaggle Winner	3.81	NA
Kaggle TMVA	3.50	NA
BDT	3.44	3.13
saBDT	3.35	3.22
NN	3.27	2.88
AdvNN	3.20	3.08

- Including systematic aware training leads to loss in AMS and gain in AAMS
- Tested methods not as fully optimized as during challenge

Aware Boosted Decision Trees: Bootstrap

- Difference in performance of standard BDT and tuned saBDT tested on bootstrapped samples
- Bootstrap creates new samples with different statistics out of the original sample
- saBDT performs indeed better, but not significant
- $\Delta AAMS = 0.138 \pm 0.150$

