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HEP.TrkX Project
➢ Pilot project funded by DOE ASCR and COMP HEP
➢ Part of HEP CCE
➢ Mission

 Explore deep learning techniques for track formation

➢ People
 LBL : Paolo Calafiura, Steve Farrell, Mayur Mudigonda,

Prabhat
 FNAL : Giuseppe Cerati, Lindsey Gray, Jim Kowalkowski,

Panagiotis Spentzouris, Aristeidis Tsaris
 Caltech : Dustin Anderson, Josh Bendavid, Pietro Perona,

Maria Spiropulu, Jean-Roch Vlimant, Stephan Zheng

➢ All material available under https://heptrkx.github.io/  

https://heptrkx.github.io/
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Outline

➢ The challenge of Charged Particle Tracking

➢ Forewords on tracking with ML

➢ Dataset and graph neural network models

➢ Results and outlooks
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Tracking in a Nutshell

Seeding Kalman Filter

● Particle trajectory bended in a
solenoid magnetic field

● Curvature is a proxy to
momentum

● Particle ionize silicon pixel
 and strip throughout 
several concentric layers

● Thousands of sparse hits
● Lots of hit pollution from low

momentum, secondary particles

● Explosion of hit combinatorics in both seeding and stepping pattern recognition
● Highly time consuming task in extracting physics content from LHC data
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Complexity and Ambiguity

Shown trajectories are reconstructed objects

The future holds much more hits
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High Luminosity LHC
The Challenge
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Cost of Tracking
● CPU time consumption in HL-LHC era surpasses computing budget

➔ Need for faster algorithms
● Charged particle track reconstruction is one of the most CPU consuming

task in  event reconstruction
➔ Optimizations mostly saturated

● Large fraction of CPU required in the HLT. Cannot perform tracking
inclusively

➔ Approximation possible in the trigger

@HL-LHC <μ> >200
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Fast Hardware Tracking
● Track trigger implementation for Trigger

upgrades development on-going
● Several approaches investigated
● Dedicated hardware is the key to fast

computation.
● Not applicable for offline processing unless

through adopting heterogeneous computing.
Tracklets

Hough

Transform

Kalman

Filte
r
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Motivations

Current algorithms for tracking are highly
performant physics-wise and scale badly

computation-wise

Faster implementations are possible with
dedicated hardware

Go back to the blackboard for new approaches
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HEP.TrkX Approaches

Seq-to-seq track finding

https://tinyurl.com/y87saehf 

https://tinyurl.com/yb3v93y9 

End-to-end hit assignment

Track following with RNN https://heptrkx.github.io/ 

https://tinyurl.com/y87saehf
https://tinyurl.com/yb3v93y9
https://heptrkx.github.io/
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Data Representation
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Charged Particle Tracking Dataset

https://www.kaggle.com/c/trackml-particle-identification
https://competitions.codalab.org/competitions/20112  

● This work uses the public
dataset of the TrackML
Particle Tracking Challenge
(Kaggle, codalab).

● Simulating the dense
environment expected for
HL-HLC. Average of 200
proton-proton interaction per
bunch crossing.

https://www.kaggle.com/c/trackml-particle-identification
https://competitions.codalab.org/competitions/20112
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Tracker Hit Graph

Directed graph constructed
➢ One tracker hit per node
➢ Direct edge inside-out
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Edge Classification with
Graph Neural Network 
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Node & Edge Representations

Node representation

Tracker hit 
feature

Edge representation

Vector

Edge ScoreEdge Score

Latent Space

Output

Input

Latent edge representation taken to be the classification score
instead of some latent vector representation
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Neural Networks
● Input Network

➢ Transforms from hit features (r,φ , z) to the node latent
representation (N for 8 to 128)

 Dense : 3→...→N

● Edge Network
➢ Predicts an edge weight from the node latent

representation at both ends
 Dense : N+N→...→1

● Node Network
➢ Predicts a node latent representation from the current

node representation, weighted sum of node latent
representation from incoming edge, and weighted sum

 Dense :  N+N+N→...→N
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Edge Network

← EdgeNet(   ,   )
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Node Network

← NodeNet(   ,       +       ,       +       +       )

self incoming outgoing



03/10/19 19
J.-R. Vlimant

Information Flow
● Graph is sparsely connected from layer to layer
● InputNet + EdgeNet + NodeNet only correlates hits

information on triplet of layers
✗ The information from the outer hits and inner hits

are not combined

● Several possible ways to operate the connection
➔ Correlates hits information through multiple iterations of

(EdgeNet+NodeNet)
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Problem Size 
Considerations
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Dealing with Large Graphs

✗ Full event embedding
✗ A graph with ~120k nodes (14.4B edges) and ~1M

potential edges is a big graph

● Split the problem
➢ currently using 16 sectors in φ

● Use sparse matrix implementation 
➢ https://github.com/deepmind/graph_nets  for

example
● Identify disjoint sub-graphs

➢ Geometrical cuts, segment pre-classifier, ...
● Implement distributed learning of large graphs

➢ Scope of the Exa.TrkX Project

https://github.com/deepmind/graph_nets
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Downgraded Complexity
● TrackML dataset generated from ... with an

average of  200 pileup events.
✗ Not computational possible at this time to

embed the smallest relevant sector of full
event on a graph

➔ Sub-dataset are constructed by
➢ Low density

✔ p
T
>1 GeV, Δφ<0.001, Δz

0
<200mm

✔ acceptance: 99%, purity: 33%
➢ Medium density

✔ p
T
>500 MeV, Δφ<0.0006, Δz

0
<150mm

✔ acceptance: 95%, purity: 25%
➢ High density

✔ p
T
>100 MeV, Δφ<0.0006, Δz

0
<100mm

➔ acceptance: 43%, purity: 9%
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Performance

Low density
acc. x eff. ~ 97%

Medium density
acc x eff. ~ 90%

High density
acc. x eff. ~ 33%
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Summary

● Pilot project to explore new ideas for
charged particle track reconstruction

● Graph neural network show promising
results even in increasingly dense event

● Post-processing, pre-processing, using
domain knowledge, ... : work in progress

● Optimizing such models requires training at
scale : issues to be tackled, stay tuned
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Extra material
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Recall & Precision

Precision ≡ Efficiency
Recall ≡ Purity ≡ 1-(Fake rate)

Accuracy ≡ How much do we get it right
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Pattern Recognition With 
Deep Learning
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Machine Learning for Tracking

Zagoruyko et al, 1604.02135 Photo by Pier Marco Tacca/Getty Images

Many possible ways to cast the algorithm of
tracking, or part of the current algorithms in a

machine learning problem

https://arxiv.org/pdf/1604.02135.pdf
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Similarities and Challenges
● Particle tracking is an active field in data science

➢ Different type of particles
➢ Not oriented to code performance

● Making a track is a pattern recognition problem 
➢ Not the usual one in data science

● Tracking data is much sparser than regular images
➢ Test and adapt methods

● Tracking device may have up to 10M of channels
➢ Scale up deep learning models
➢ Perform tracking by sector

● Underlying geometry of sensor more complex
➢ More than a simple picture
➢ Barrels and end-caps are not the usual pictures

● Not the regular type of sequences
➢ Cover new ground of sequence processing

● Defining an adequate cost function
➢ Tracking algorithms are optimized by proxy

● A solution must be performant during inference ...
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HL-LHC Challenge

<PU>=7 <PU>=21

<PU>=140-200
10x more hits 

Circa 2025

● CPU time extrapolation into HL-LHC era far surpasses growth in
computing budget

● Need for faster algorithms

● Approximation allowed in the trigger
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Scene Labeling

From talk of LeCunn at CERN
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Scene Labeling

Farabet et al. ICML 2012, PAMI 2013

➔ Assign hits to track candidates
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Scene Captioning

Karpathy, Fei-Fei, CVPR 2015

➔ Compose tracks explanation from image



03/10/19 35
J.-R. Vlimant

Text Translation

➔ From sequence of hits on layer to sequence of hits on track
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Possible Application to Tracking
● Track candidate

➔ Finding the hits that belong to a track
➔ Seed + hits → tracks

● Track parameters
➔ Measuring the physic quantity of tracks
➔ Hits → track kinematics

● Seeding
➔ Putting together hits into tracks
➔ Hits → track
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HEP.TrkX Approaches

Seq-to-seq track finding

https://tinyurl.com/y87saehf 

https://tinyurl.com/yb3v93y9 

End-to-end hit assignment

Track following with RNN https://heptrkx.github.io/ 

https://tinyurl.com/y87saehf
https://tinyurl.com/yb3v93y9
https://heptrkx.github.io/
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Seeded Track Candidate Making
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Seeded Pattern Prediction

● Hits on first 3 layers are used as seed
● Predict the position of the rest of the hits on all layers
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Long Short Term Memory - LSTM

Breakthrough in sequence processing by carrying over
an internal state, “memory” of the previous items in the

sequence, allowing for long range correlation

http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM ≡ Kalman Filter
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Seeded Pattern Recognition Insights
● For a simplified track models,

predicting the track pattern from the
seed works

➢ In 2D and 3D
➢ With some level of noise
➢ With other tracks present
➢ On layers with increasing number

of pixels

● Several other architectures tried
➢ Convolutional neural nets

(no LSTM)
➢ Convolutional auto-encoder
➢ Bi-directional LSTM
➢ Prediction on next layer with LSTM
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Tracking RAMP at CtD
S. Farrell : Best solution in the Machine Learning category
https://indico.cern.ch/event/577003/contributions/2509988/ 

● Down-sampling layer to 100 bins
● LSTM for hit assignment
● 92% efficiency
● Robust to holes and missing hits 

● Increased granularity in “road”
● LSTM for hit assignment
● 95% efficiency

https://indico.cern.ch/event/577003/contributions/2509988/
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Finding Tracks with LSTM
LSTM ≡ Kalman Filter

➢ Search seeded from a
known tracklet

➢ Hit location is discretized to
fixed length

➢ Model predicts the binned
position of the hit on the
next layer
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Hit Prediction with Gaussian Model

➢ Search seeded from a
known tracklet

➢ Hit positions taken in
sequential input

➢ Model predicts the
position of the hit on the
next layer

Loss function incorporates the position and
the predicted uncertainty
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Track Parameters Measurement
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Track Parameter Estimation

Try to predict the
slope and intersect
of this track
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Multi-Track Prediction with LSTM

● Hit pattern from multiple track
processed through convolutional
layers

● LSTM Cell runs for as many
tracks the model can predict.
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Predicting Covariance Matrix

● The observed hit pattern from multiple track
processed through convolutional layers

● LSTM cells are ran multiple time in order to predict
a list of particles

● Model is able to predict the covariance matrix of
track parameters, incorporated in the loss function
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Track Parameter Prediction

Graphical representation of track slope,
intersect and respective uncertainties

Hit pattern in
the detector

Track parameters and
corresponding
uncertainties
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Hit Assignment Approaches
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Pattern Recognition

Try to assemble
hits into track
candidates.
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seq-2-seq tracking
● Input sequence of hits per layers (one sequence per layer)

➢ One LSTM cell per layer
● Output sequence of hits per candidates

➢ Final LSTM runs for as many candidates the model can predict

 Restricted to 4 layers
(with seeding in mind)

 Full performance
evaluation still to be done
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Hit Assignment Algorithm

➢ Unseeded hit-to-track assignment (clustering)
➢ Hit positions taken in sequential input
➢ Model predicts the probability that a hit belongs

to a track candidate
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Vertexing
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Vertexing with CNN

➢ Using hits binned (η, φ) map in
input for a regression of the
primary vertex position

➢ Modest success
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Graph Networks Approach
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Seeded Hit Classification with GNN
➢ Seeded hit

classification
➢ Model predicts

whether hits belong
to the given seed



03/10/19 59
J.-R. Vlimant

Track Building With GNN

See our poster on Track 6 for more details
https://indico.cern.ch/event/587955/contributions/2937570/ 

Successive iterations on a selected event

➢ Unseeded hit-pair classification
➢ Model predicts the probability that a hit-pair is valid

https://indico.cern.ch/event/587955/contributions/2937570/
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Hardware Consideration
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Inference on FPGA
● Demo at NIPS 2017 of implementing neural

networks on FPGA
● Collaborating with hls4ml team to push the

graph neural networks models to the nexts level

See Jennifer's talk during this event 
https://indico.cern.ch/event/587955/contributions/2937529/ 

https://indico.cern.ch/event/587955/contributions/2937529/
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Tracking Not In a Nutshell

● Hits preparation

● Seeding

● Pattern recognition

● Track fitting

● Track cleaning

S
ev

er
al

 T
im

es



03/10/19 63
J.-R. Vlimant

Hit Preparation

● Calculate the hit position from barycenter of charge
deposits

● Use of neural net classifier to split cluster in ATLAS

● Access to trajectory local parameter from cluster
shape

● Remove hits from previous tracking iterations

● HL-LHC design include double layers giving more
constraints on the local trajectory parameters
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Seeding

● Combinatorics of 2 or 3 hits
with tight/loose constraints
to the beam spot or vertex

● Seed cleaning/purity plays
in an important in reducing
the CPU requirements of
sub-sequent steps
➔ Consider pixel cluster

shape and charge to
remove incompatible
seeds

● Initial track parameters from
helix fit
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Pattern Recognition
● Use of the Kalman filter

formalism with weight matrix

● Identify possible next layers
from geometrical considerations

● Combinatorics with compatibles
hits, retain N best candidates

● No smoothing procedure

● Resilient to missing modules

● Hits are mostly belonging to one
track and one track only

● Hit sharing can happen in dense
events, in the innermost part

● Lots of hits from low momentum
particles
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Kalman Filter
● Trajectory state propagation

done either
✔ Analytical (helix, fastest)
✔ Stepping helix (fast)
✔ Runge-Kutta (slow)

● Material effect added to
trajectory state covariance

● Projection matrix of local helix
parameters onto module surface
➔ Trivial expression due to local

helix parametrisation
● Hits covariance matrix for pixel

and stereo hits properly formed
✗ Issue with strip hits and

longitudinal error being non
gaussian (square)
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Track Fitting

● Use of the Kalman filter
formalism with weight
matrix

● Use of smoothing
procedure to identify
outliers

● Field non uniformity are
taken into account

● Detector alignment
taken into account



03/10/19 68
J.-R. Vlimant

Cleaning, Selection

● Track quality
estimated using
ranking or
classification method
➔Use of MVA

● Hits from high quality
tracks are remove
for the next iterations
where applicable
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A Charged Particle 
Journey
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First order effect : electromagnetic elastic
interaction of the charge particle with nuclei (heavy

and multiply charged) and electrons (light and
single charged)

Second order effect : inelastic interaction with
nuclei.



03/10/19 71
J.-R. Vlimant

Magnetic Field
● Magnetic fieldB  acts on charged particles

in motion : Lorentz Force

● The solution in uniform magnetic field is
an helix along the field : 5 parameters

● Helix radius proportional to the component
of momentum perpendicular to B

● Separate particles in dense environment

➔ Bending induces radiation :
bremsstrahlung 

➔ The magnetic field has to be known to a
good precision for accurate tracking of
particle 
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Multiple Scattering
● Deflection on nuclei (effect from

electron are negligible)

● Addition of scattering processes

● Gaussian approximation valid for
substantial material traversed

Gaussian Approximation
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Bremsstrahlung
● Electromagnetic radiation of

charged particles under acceleration
due to nuclei charge

● Significant at low mass or high
energy

● Discontinuity in energy loss
spectrum due to photon emission
and track curvature

➔ Can be observed as kink in the
trajectory or presence of collinear
energetic photons
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Energy Loss
● Momentum transfer to electrons when

traversing material (effect of nuclei is
negligible

● Energy loss at low momentum
depends on mass : can be used as
mass spectrometer

ALICE Experiment
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Summary on Material Effects

● Collective effects can be estimated
statistically and taken into account in how they
modify the trajectory

● Bremstrahlung and nuclear interactions
significantly distort trajectories 
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