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Problem domain

> Adataset consisting of examples from several sources

> Noreliable information on the source from which came each particular
example

> Known distributions of feature m for all sources

> We want to get the distribution of feature x for the signal source, z
distribution is independent from m



Toy example

Two sources, signal and background:
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Enter sWeights

p(signallm)  p(background|m)
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Paper [1], ROOT implementation, Python implementation


https://arxiv.org/abs/physics/0402083
https://root.cern.ch/doc/v612/classRooStats_1_1SPlot.html
https://arogozhnikov.github.io/hep_ml/splot.html

Apply sWeights
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Enter Machine Learning

We want to train a machine learning
algorithm to separate signal from
background using the informationin z

Paper [2]: Use each example twice,
once as signal, once as background
with corresponding sWeights as
example weights for a classifier
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https://ekp-invenio.physik.uni-karlsruhe.de/record/48940/files/EKP-2017-00067.pdf

Let’s train an NN

Learning curves, Higgs dataset, Deep Neural Networks
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Why can’t | just use sWeight as sample_weight?

Some sWeights are by design negative. Take logloss and a signal example with
negative weight w:

L= —w-log(p),
where pis the signal probability.
lim, [ = —(—w]) lim log(p) = —o0

If the algorithm is able to isolate a negative weight example, it can optimize the
total loss into —oo ignoring the rest of the dataset



Collapsing sWeights to probability: intuition

> Data distribution is a mix of signal and background distributions

> It should be possible to reweight the dataset with ordinary positive weights

dfigna
equal to Psignal(x) = ppdfi‘vx(‘g)

> Using sWeights results in the same distribution



Collapsing sWeights to probability

To get the probability that an example with
given features z is signal, we need to find the
average sWeight for examples with features z

Proof is in the backup
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Collapsing sWeights to probability

To get the probability that an example with
given features z is signal, we need to find the
average sWeight for examples with features z

One problem: z usually is a high-dimensional real vector, we have a single
example for each z value

Proof is in the backup
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Collapsing sWeights to probability: practical

Train a regression bound to [0, 1] to predict
sWeight given z as features. Use the result as
the weights further in the training pipeline.

There is no one-to-one mapping of z to w — by the design of the sWeights.
However, for a regression using mean squared error the minimum is achieved
when prediction is equal to E (sWeight|z)

M



Signal vs. background: likelihood

We also propose the following loss:

—log[p (signal|m) - f(z) + p (background|m) - (1 — f(z))]

> p(signal, background|m) are the probabilities obtained from the m
distributions that are normally used to compute sWeights

> f(z) € [0,1]is the signal probability predicted by the classifier

Proof is in the backup
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Experiments

Two problems:
» Classifications of the same signal vs. background as were used in building
sWeights
> Classification of one sWeighted dataset vs. another sWeighted dataset
Two open datasets:
> ATLAS Higgs, not using weights, sWeights added artificially, 28 tabular
features, 8.8 - 106 train, 2.2 - 10° test
> LHCb Muon D, includes sWeights, 123 features, 7 - 106 train, 1.7 - 10° test,
pion vs muon, not using momentum and momentum reweighting
Two models:
> Catboost
> Deep fully-connected neural network (NN)
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https://archive.ics.uci.edu/ml/datasets/HIGGS
https://www.kaggle.com/kazeev/idao2019muonid

Higgs — NN

Fully-connected neural network (NN), 3
layers, 128, 64, 32 neurons in layer,
leaky relu (0.05),
adam(learning_rate=1e-3, beta1=0.9,
beta2=0.999)
> Truelabels - logloss using the true
labels
> sWeights - using sWeights as
weights for logloss
> Likelihood - our likelihood
» Constrained MSE - our regression

Training epochs is the right moment so that the

training doesn’t explode completely
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Higgs — Catboost

Catboost with 1000 trees

>

True labels - logloss loss using the
true labels

sWeights — using sWeights as
weights for logloss

Likelihood — our likelihood
Constrained MSE - our regression
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MulD - Catboost

Catboost with 1000 trees, separate
sWeights to probabilty regressions per
particle type
> Ignoring weight - logloss without
weights
> sWeights — using sWeights as
weights for logloss
> Constrained MSE - our regression
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Conclusion

> Training an MLP classifier on sWeighted data results in chaotic behaviour

>  We propose two mathematically rigorous loss functions for traininig a
classifier on sWeighted data

> We show our methods outperform directly using sWeights as example
weights; effect size decreases with sample size increase

Code for Catboost that implements regression constrained to [0, 1] and the
likelihood

17


https://github.com/kazeevn/catboost/tree/constrained_regression
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Learning curves — Higgs results, sWeights

le7

Learning curves, Higgs dataset, Deep Neural Networks
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Learning curves — Higgs results, other
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Collapsing sWeights to probability — proof

Let f(z) be any function of the features z, such as output of a machine learning
algorithm, w(m) the sWeight

By o, ()] = / drf (2)psio )

W(I) psig(l”)

pmix(l’)
By o, (1) = / daf (2) W () prs(2) )

Let m be the variable used to compute sWeights:

By o, [f(2)] = / dedmu(m)f (2) pr(, m)
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Collapsing sWeights to probability

sPlot requires that  and m are independent:

By, [f(2)] = / dedmw(m) () s (2) proe(m]2)

ey @) = [ dof@pmia) [ dmatm)prss (i)
From (1)

[ st @)W @) = [ et @) [ dino(mprisnle)
W(a) = [ dmum)prs(mfo)
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Likelihood — proof

s —the example is signal, b — is background, f(z) — predicted signal probability

p(m, zjmodel) = p(m, z|model, s)p(s) + p(m, zjmodel, s)p(b)
~ p(m|s)p(ls, model) + p(m|b)p(s[, model

= p(m|s)p<8,x’ model)p(s) + same for b
p(z)

L = log p (m, zjmodel)
= log [p(m|s)p(s|z, model) + p(m|b)p(b|z, model)] — log p(z)
= log [p(m|s)f(z) + p(m|b)(1 — f(x))] 4 const
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Loss might be convex

Paper [3] has proof that sWighted (they don’t use the term though) loss with
just two m values is convex if the original loss is symmetric
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https://papers.nips.cc/paper/5073-learning-with-noisy-labels.pdf
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