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Problem domain

› A dataset consisting of examples from several sources

› No reliable information on the source fromwhich came each particular

example

› Known distributions of featurem for all sources

› Wewant to get the distribution of feature x for the signal source, x
distribution is independent fromm
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Toy example

Two sources, signal and background:
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Enter sWeights

P =

p (signal|m) p(background|m)


p1,1 1− p1,1 example 1

p2,1 1− p2,1 example 2

p3,1 1− p3,1 example 3

. . . . . . …

sWeights = W = P ·
((

PT · P
)−1 ·

[∑
pi,1,

∑
1− pi,1

])
P =

(
W ·

(
WT · W

)−T
)
·
[∑

wi,1,
∑

1− wi,1

]
Paper [1], ROOT implementation, Python implementation
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https://arxiv.org/abs/physics/0402083
https://root.cern.ch/doc/v612/classRooStats_1_1SPlot.html
https://arogozhnikov.github.io/hep_ml/splot.html


Apply sWeights
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EnterMachine Learning

Wewant to train amachine learning

algorithm to separate signal from

background using the information in x

Paper [2]: Use each example twice,

once as signal, once as background

with corresponding sWeights as

example weights for a classifier
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https://ekp-invenio.physik.uni-karlsruhe.de/record/48940/files/EKP-2017-00067.pdf


Let’s train an NN

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

800000

600000

400000

200000

0

lo
ss

Learning curves, Higgs dataset, Deep Neural Networks

likelihood
cross-entropy
constrained-MSE
MSE
s-weights
true-labels

7



Why can’t I just use sWeight as sample_weight?

Some sWeights are by design negative. Take logloss and a signal example with

negative weight w:
L = −w · log(p),

where p is the signal probability.

lim
p→0

L = −(−|w|) lim
p→0

log(p) = −∞

If the algorithm is able to isolate a negative weight example, it can optimize the

total loss into−∞ ignoring the rest of the dataset
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Collapsing sWeights to probability: intuition

› Data distribution is amix of signal and background distributions

› It should be possible to reweight the dataset with ordinary positive weights

equal to psignal(x) =
pdfsignal(x)
pdfmix(x)

› Using sWeights results in the same distribution
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Collapsing sWeights to probability

To get the probability that an example with

given features x is signal, we need to find the
average sWeight for exampleswith features x

One problem: x usually is a high-dimensional real vector, we have a single

example for each x value

Proof is in the backup

10



Collapsing sWeights to probability

To get the probability that an example with

given features x is signal, we need to find the
average sWeight for exampleswith features x

One problem: x usually is a high-dimensional real vector, we have a single

example for each x value

Proof is in the backup

10



Collapsing sWeights to probability: practical

Train a regression bound to [0, 1] to predict
sWeight given x as features. Use the result as
the weights further in the training pipeline.

There is no one-to-onemapping of x to w – by the design of the sWeights.

However, for a regression usingmean squared error theminimum is achieved

when prediction is equal toE (sWeight|x)
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Signal vs. background: likelihood

We also propose the following loss:

− log [p (signal|m) · f (x) + p (background|m) · (1− f (x))]

› p (signal, background|m) are the probabilities obtained from them
distributions that are normally used to compute sWeights

› f (x) ∈ [0, 1] is the signal probability predicted by the classifier

Proof is in the backup
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Experiments

Two problems:

› Classifications of the same signal vs. background as were used in building

sWeights

› Classification of one sWeighted dataset vs. another sWeighted dataset

Two open datasets:

› ATLASHiggs, not using weights, sWeights added artificially, 28 tabular

features, 8.8 · 106 train, 2.2 · 106 test
› LHCbMuon ID, includes sWeights, 123 features, 7 · 106 train, 1.7 · 106 test,

pion vsmuon, not usingmomentum andmomentum reweighting

Twomodels:

› Catboost

› Deep fully-connected neural network (NN)
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https://archive.ics.uci.edu/ml/datasets/HIGGS
https://www.kaggle.com/kazeev/idao2019muonid


Higgs –NN

Fully-connected neural network (NN), 3

layers, 128, 64, 32 neurons in layer,

leaky relu (0.05),

adam(learning_rate=1e-3, beta1=0.9,

beta2=0.999)

› True labels – logloss using the true

labels

› sWeights – using sWeights as

weights for logloss

› Likelihood – our likelihood

› ConstrainedMSE – our regression

Training epochs is the rightmoment so that the

training doesn’t explode completely
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Higgs – Catboost

Catboost with 1000 trees

› True labels – logloss loss using the

true labels

› sWeights – using sWeights as

weights for logloss

› Likelihood – our likelihood

› ConstrainedMSE – our regression
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MuID – Catboost

Catboost with 1000 trees, separate

sWeights to probabilty regressions per

particle type

› Ignoring weight – logloss without

weights

› sWeights – using sWeights as

weights for logloss

› ConstrainedMSE – our regression
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Conclusion

› Training anMLP classifier on sWeighted data results in chaotic behaviour

› We propose twomathematically rigorous loss functions for traininig a

classifier on sWeighted data

› We show ourmethods outperform directly using sWeights as example

weights; effect size decreases with sample size increase

Code for Catboost that implements regression constrained to [0, 1] and the

likelihood
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https://github.com/kazeevn/catboost/tree/constrained_regression
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Learning curves – Higgs results, sWeights
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Learning curves – Higgs results, other
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Collapsing sWeights to probability – proof

Let f (x) be any function of the features x, such as output of amachine learning

algorithm, w(m) the sWeight

Ex psig [f (x)] =
∫

dxf (x)psig(x)

W (x) = psig(x)
pmix(x)

Ex psig [f (x)] =
∫

dxf (x)W (x)pmix(x) (1)

Letm be the variable used to compute sWeights:

Ex psig [f (x)] =
∫

dxdmw(m)f (x)pmix(x,m)
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Collapsing sWeights to probability

sPlot requires that x andm are independent:

Ex psig [f (x)] =
∫

dxdmw(m)f (x)pmix(x)pmix(m|x)

Ex psig [f (x)] =
∫

dxf (x)pmix(x)
∫

dmw(m)pmix(m|x)

From (1) ∫
dxf (x)W (x)pmix(x) =

∫
dxf (x)pmix(x)

∫
dmw(m)pmix(m|x)

W (x) =
∫

dmw(m)pmix(m|x)
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Likelihood – proof

s – the example is signal, b – is background, f (x) – predicted signal probability

p(m, x|model) = p(m, x|model, s)p(s) + p(m, x|model, s)p(b)
∼ p(m|s)p(x|s,model) + p(m|b)p(x|b,model)

= p(m|s)p(s|x,model)p(s)
p(x)

+ same for b

L = log p (m, x|model)

= log [p(m|s)p(s|x,model) + p(m|b)p(b|x,model)]− log p(x)
= log [p(m|s)f (x) + p(m|b)(1− f (x))] + const
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Lossmight be convex

Paper [3] has proof that sWighted (they don’t use the term though) loss with

just twom values is convex if the original loss is symmetric
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https://papers.nips.cc/paper/5073-learning-with-noisy-labels.pdf
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