

Adversarial Neural Network-based Data-Simulation Corrections for Jet-Tagging at CMS

Martin Erdmann, <u>Benjamin Fischer</u>, Yannik Rath, Marcel Rieger on behalf of the CMS collaboration

ACAT 2019 - Saas Fee

Purpose

→ Reduce data-simulation differences in b-tag discriminator shape through event weights

Method: Tag & Probe (<u>1712.07158</u>)

- flavor f (heavy & light) enriched regions R
- Infer jet Scale-Factor per bin as:

$$SF_{f,i+1} = \frac{Data - \omega_i \cdot MC_{\neg f}}{MC_f} \Big|_{R=R(f)}$$

$$\omega = \prod_j^{\text{jets}} SF_j$$

 Repeat iteratively (i) as SFs depend on those of other flavor (¬f)

Binned in p_T , η , b-tag value of probe jet

- → bins must have sufficient statistics
- number dependent variables limited

Smoothen by fitting a function to bins

needs adjustment to prevent overfitting

2 enriched regions R

→ does not readily translate to multiple flavors/regions

Benjamin Fischer, 13th Mar. 2019

Model entire function $SF_f(p_T, \eta, b$ -tag) by a Neural Network

- "fit function" can model anything
- fits according to available statistics (controlled by regularization)
 - no need for prior binning
 - can handle more inputs

But: how to train it?

- training target is an distribution
- encode into discriminator (adversary)
- can cover multiple regions

SF-net:

• Loss: $MSE\left(SF, \frac{Data}{MC} = \frac{D}{1-D}\right)$

Discriminator *D* (Adversary):

 Loss: SF weighted cross-entropy between Data and MC events

Architecture

- fully connected
- Same for all
 - SFnet/Discriminator
 - heavy/light flavor region

Layers	10
Units	128
Activation	LeakyRELU @ 0.01
Weight decay	3e-5
Batch size	4096
Train/Valid. split	80/20

Training schedule

- 1. Train discriminator until converged
- Train SFnet for 1 batch
- 3. Repeat until SFnet converged
- Typically finished after ~50 epochs (no limit)

Ensembling

- mean output of 25 fully separate trainings
- variance indicates stability of procedure

7 Scale Factor Comparison - Histogram

Benjamin Fischer, 13th Mar. 2019

Shown

- $SF_f(p_T, \eta, b\text{-}tag)$ vs. b-tag value
- in specific (p_T, η) bins of traditional SFs
- for all probe jets of particular flavor
- using same events as traditional SFs
 (DiLepton of ttbar & DY, 2017)

Observations

- → Traditional SF have fixed value
- → DeepSF one value per jet
 - broader distribution where needed

8 Scale Factor Comparison - Mean

Benjamin Fischer, 13th Mar. 2019

DeepSF

- mean of each bin's entries
- hatched: ensemble fluctuations (standard error of mean)

Traditional SF

 w/ envelope of systematics derived from (limited) statistics

Observations

- Ensemble fluctuations:
 - encoding limited statistic
 - not the (sole) cause of broadened deepSF values

RWTHAACHEN UNIVERSITY

- B-tagging methods becoming very sophisticated
 - → SFs may depend on many variables
 - → Need to "babysit" binning & fit functions in traditional SF
- DeepSF method working well
 - → Good agreement with traditional SF
 - → Extensible to more
 - input variables
 - flavor-enriched regions

- Processing all systematics
- Testing on real-life analyses
- Consolidating networkstructure & training method

