A 3D Track Finder for the Belle II CDC L1 Trigger

Sebastian Skambraks

Max Planck Institute for Physics

Mar 11, 2019

Introduction Belle II Trigger NeuroTrigger Algorithm Hardware 3D Hough Finder Algorithm Accuracy

Introduction - Belle II at SuperKEKB

located in Tsukuba, Japan at KEK

高エネルギー加速器研究機構 Kō Enerugī Kasokuki kenkyū kikou

High Energy Accelerator Research Organization

- ► asymmetric e⁺ e⁻ collider
- $\Upsilon(4S)$ resonance $\downarrow B^0 \overline{B}^0 / B^+ B^-$
- $\mathcal{L} = 8 \times 10^{35} \, \text{cm}^{-2} \, \text{s}^{-1}$ (40× KEKB)
- ▶ average p_T: 500 MeV
- average track multiplicity: 11

Introduction - The Belle II Detector

Introduction - The Belle II Detector

Introduction - Belle II Background

- ► tracks generated at the beam-line & -wall with vertices $z \neq 0$ cm
- increase with luminosity
- main processes:
 - Touschek effect
 - radiative Bhabha back scatters
 - beam gas

NeuroTrigger Goals

- reject tracks from $z \neq 0 \text{ cm}$
- ▶ single track *z*-vertex resolution < 2 cm
- ► latency < 1 µs

 \Rightarrow need z vertex reconstruction at 1st trigger level

Introduction - Belle II Background

- ► tracks generated at the beam-line & -wall with vertices $z \neq 0$ cm
- increase with luminosity
- main processes:
 - Touschek effect
 - radiative Bhabha back scatters
 - beam gas

NeuroTrigger Goals

- reject tracks from $z \neq 0 \text{ cm}$
- ▶ single track *z*-vertex resolution < 2 cm
- ► latency < 1 µs

 \Rightarrow need z vertex reconstruction at 1st trigger level

Introduction - Belle II First Level Trigger

Requirements

- ▶ 30 kHz trigger rate
- 5 µs latency
- \Rightarrow deadtime-free pipelined operation

Introduction - Belle II First Level Trigger

▶ 56 layers combined to 9 super layers (SL)

2336 track segments (TS) in 9 SL

SL	angle (mrad)
2	45.4 - 45.8
4	-55.3 – -64.3
6	63.1 - 70.0
8	-68.574.0
Stereo	SL configuration

▶ 56 layers combined to 9 super layers (SL)

2336 track segments (TS) in 9 SL

4 stereo	
super	
layers	axial layer

SL	angle (mrad)
2	45.4 - 45.8
4	-55.3 – -64.3
6	63.1 - 70.0
8	-68.5 – -74.0
Stereo	SL configuration

NeuroTrigger Input

- position, drift time and left/right information of TS priority wires
- > 2D track estimates (p_T, φ)

NeuroTrigger - Multi Layer Perceptron

Properties

- robust function approximator
- massively parallel processing
- short deterministic runtime
- neuron: $y = tanh(w_i x_i + w_0)$
- network: $z_k = f(w_{kj}f(w_{ji}x_i))$

Training

- minimize $\sum_{i} (z_{i}^{\text{True}} z_{i}^{\text{Net}})^{2}$
- RPROP (backpropagation)

input one TS Hit per SL per track (position φ_{rel} , α and time t) output z, θ estimate

NeuroTrigger - Input Representation

3 input values per SL

 $\varphi_{\rm rel}: \quad \mbox{TS position relative to 2D track} \\ \mbox{2D arc length to Layer}$

lpha :

 r_{2D} t : drift time

Preprocessing

- use (p_T, φ) estimates from the track finder
- select hits
- calculate input values
- select dedicated network for missing hits

NeuroTrigger - Accuracy

- 5 networks total (for missing stereo hits)
- different bkg noise levels
- ▶ IP efficiency: flag IP events with $z \in [-6, 6] \text{ cm}$

NeuroTrigger - Hardware

Installation

- implemented on FPGA hardware (universal trigger board 3)
- installed in Belle II electronics hut
- ready for the start-up of Belle II phase 3 (this spring)

Neural Network

- real time application with low latency requirement
- shallow 3-layer network is used (instead deep architecture with high latency)

3D Hough Finder (p_T, φ, ϑ)

Motivation

- include CDC stereo hits
- improve track finding efficiency
- get NN hit selection in one step (axial & stereo)
- estimate θ

 (allow NN sectorization)

Track Finder Concept

Bayes'ian estimation

$$P(\textit{tracks}|\textit{hits}) = rac{P(\textit{hits}|\textit{tracks}) \cdot P(\textit{tracks})}{P(\textit{hits})}$$

with a set *tracks* and a set *hits*.

- general approach
- allows easy change of the track and hit parametrization
- results equivalent to a Hough transformation

Sectors in p_T (left) and in ϑ (right).

150 250 350

 $\varphi[^{\circ}]$

2D Hough Transformation

Hits in Parameter Space

30

20

10

0

-10

-20

-30

50

 p_T^{-1} [GeV⁻¹]

- 1. conformal mapping: $x' = \frac{2x}{x^2 + y^2}; y' = \frac{2y}{x^2 + y^2}$
- 2. Hough transform: $p_T^{-1}(\varphi) = C \cdot (x' \cos(\varphi) + y' \sin(\varphi))$

30

20

10

0

-10

-20

-30

50

150 250

 $\varphi[^{\circ}]$

350

 p_T^{-1} [GeV⁻¹]

- tracks are intersections
- blue region:
 p_T > 350 MeV

Discrete 2D Hough Space

binning of track parameters (φ, p_T) Construct Houghplane

$$H(t|hits) = \sum_{h \in hits} P(t|h)$$

P(t|h) single hit contributions. H(t|hits): Houghplane for all hits.

Cluster Peaks

- identify tracks
- are local maxima
- have a minimum weight

Transverse Hit Positions

- axial hits appear as points
- stereo hits as line segments
- θ binning allows to represent stereo hits as points

Transverse Hit Positions

- axial hits appear as points
- stereo hits as line segments
- θ binning allows to represent stereo hits as points

3D Hough Finding

3D Finder Setup

$$H(t|hits) = \sum_{h \in hits} P(t|h)$$

weights for all possible tracks t given a set hits.

Track Phase Space

▶ $p_T^{-1}, \varphi, \vartheta$

Hit Phase Space

► TS-id, priority

P(t|h)

- approximated by a 5D array A (stored as lookup table)
- A can be trained using Monte Carlo

	p _T	φ	θ	id	prio
bins	40	384	6	2336	3

Table: size of the array A

3D Finder Training

Filling

for each track

- 1. find related hits: h
- 2. bin track parameters: t
- 3. increment A[t, h] for all pairs [t, h]

Normalization

normalize A for all tracks t (\equiv all tracks are equally probable)

$$A[t,h] = \frac{A[t,h]}{\sum_{\text{all}h} A[t,h]}$$

Set Bit Width

- adjust maximum bit width of each cell in A
- currently 3 bits are used

Track Finding

Construct "Houghplane"

$$H[tracks] = \sum_{h \in hits} A[tracks, h]$$

for an event with a set *hits*, *tracks* are peaks in H

Clustering

- 1. find clusters density based clustering algorithm (DBSCAN) requirement for cluster cells: weight > 90% peakweight
- 2. select contributing hits hits with high weight contribution to the cluster require a minimum number of hits related to a cluster

Track Parameters

1. calculate track parameters weighted mean of selected cluster cells

Accuracy

A 3D Track Finder for the Belle II CDC L1 Trigger (Sebastian Skambraks)

Track Finding Efficiency

Conclusion

Neural Network Trigger

- noise robust z vertex estimation
- requires preprocessing (track finding, hit selection, input calculation)
- sectorization improves MLP accuracy
- already implemented in HW

3D Track Finder

- high track finding efficiency
- improves 2D track parameters
- provides ϑ estimate
- directly relates stereo hits to tracks
- Hough map construction implemented in HW
- HW clustering under investigation

Backup

Introduction - Interaction Region

- \blacktriangleright scattering at material \rightarrow background tracks
- two separate rings with different energies

NeuroTrigger - Input Representation

- idRef: crossing point of the track with the layer
- α: crossing angle of the track with the layer
- ▶ φ_{rel}: distance of the wire position to idRef
- t: drift time

Background - Suppression

- cumulative bkg rate after a cut on the neural network z
- z_{cut} is varied in 5 cm steps

Background - Suppression

- cumulative bkg rate after a cut on the neural network z
- z_{cut} is varied in 5 cm steps

Background - Suppression

- only tracks with $|z_{MC}| \ge 1 \text{ cm}$
- cumulative bkg rate after a cut on the neural network z
- z_{cut} is varied in 5 cm steps