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Model-independent 
tagger for 

unexpected events

Save events that does not come 
from SM processes, despite their 

nature or particular features

1. Set the stage

2. Results overview

3. How it works

4. Performances
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Physics 
anomaly 
detection

● Data mining concept

○ Often: PCA, AE

● Based on Variational 
Auto-Encoders [1]
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1. Define what is “standard” through a set of 
example events
○ The Standard Model

2. Fit a function which gives the p-value of 
belonging to the standard set
○ No assumption on the anomaly

■ Completely agnostic on BSM

3. Use this function to tag new events
○ Anomaly: low probability of belonging to 

the standard set
○ SM tails or BSM

[1]:  https://arxiv.org/abs/1312.6114

https://arxiv.org/abs/1312.6114


Workflow 4
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A use case: ℓ+X 5

● Stream of data with at least one 
interesting lepton (e or μ)

○ p
T
 > 23 GeV & ISO < 0.45

● SM contribution:

● Events represented by 21 high level 
features (HLF)

○ Broad general choice, not BSM tailored

Process
Event fraction 
in the stream

Events/month

W 59% 110M
QCD 34% 63M

Z 6.7% 12M
tt 0.3% 0.6M
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A use case: ℓ+X 7

● Stream of data with at least one 
interesting lepton (e or μ)

○ p
T
 > 23 GeV & ISO < 0.45

● SM contribution:

● Events represented by 21 high level 
features (HLF)

○ Broad general choice, not BSM tailored

Process
Event fraction 
in the stream

Events/month

W 59% 110M
QCD 34% 63M

Z 6.7% 12M
tt 0.3% 0.6M



How to 
deploy it

● VAE trained only on 
SM

● VAE does not see the 
BSM (if any) until it’s 
evaluated on new 
events
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1. Train one (or more) VAE(s):
a. Train on MC (pure SM)
b. Training on data (robust against signal 

injection)

2. Put the VAE(s) online in the trigger
a. Evaluate each event
b. Acceptance threshold such that O(10) SM 

events/day are triggered

3. Collect events in a dedicated dataset
a. Visual inspection
b. Develop targeted analysis



BSM benchmark models 9

● A → 4ℓ: neutral scalar, M = 50 GeV

● LQ→ bτ: leptoquark, M = 80 GeV

● h0 → ττ: neutral scalar, M = 60 GeV

● h± →τν: charged scalar, M = 60 GeV

Light BSM which are usually very hard to 
trigger with standard strategies

BENCHMARKING ONLY, 
NOT USED FOR TRAINING
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Given the model independent 
nature, there is no unique 
way to define benchmarks.



Results 11

ε
SM

 = 5.4・10-6 ⟺ 30 evts/day 

● VAE
○ A single one, trained only 

on SM
○ Applied to all the BSM



Results 12

ε
SM

 = 5.4・10-6 ⟺ 30 evts/day 

---  Model dep.         ⎯⎯⎯  VAE
● VAE

○ A single one, trained only 
on SM

○ Applied to all the BSM

● Model dependent clf
○ 4 in total, each one trained 

on a specific BSM vs SM
○ Set target performances



Results 13

ε
SM

 = 5.4・10-6 ⟺ 30 evts/day 

---  Model dep.         ⎯⎯⎯  VAE
•••  Model dep. on a different model ● VAE

○ A single one, trained only 
on SM

○ Applied to all the BSM

● Model dependent clf
○ 4 in total, each one trained 

on a specific BSM vs SM
○ Set target performances

● Model dep. clf applied to a 
different BSM model



Results 14

ε
SM

 = 5.4・10-6 ⟺ 30 evts/day 

---  Model dep.         ⎯⎯⎯  VAE
•••  Model dep. on a different model

Efficiency drop ≲ 10 w.t.r. to  
model-dependent classifier (i.e. 

optimal limit)



Train on data 15

If BSM is rare enough, having it in the training sample will not spoil performances.

● Train on a dataset with signal injected:

● SM size: 3.5M evts ≃ 100 pb-1 ≃ few hours

No performance drop up to 10-3 signal contamination in training set (huge, S/B = 1):
⇒ Can be trained on data without impacting BSM efficiency

Injected 
evts

Training 
set 

fraction

VAE 
selected 

evts/month

Anomaly 
fraction

700 2⋅10-4 134 12%

7k 2⋅10-3 957 48%

70k 2⋅10-2 6 0.6%



Let’s open the box
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Auto-encoders in one slide

● Data coding algorithms which learn to 
describe a given dataset in a latent space

● Unsupervised algorithm, used for data 
compression, generation, clustering, etc.

● Anomaly: any event whose output is “far” 
from the input
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The Variational Auto-Encoder
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The Variational Auto-Encoder
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x 
= 

H
LF



The Variational Auto-Encoder
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x 
= 

H
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g a

μz

σz

NN with some 
free parameter



The Variational Auto-Encoder
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The Variational Auto-Encoder
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The Variational Auto-Encoder
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The Variational Auto-Encoder
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The Variational Auto-Encoder
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Convergence check: SM auto-encoding
27

● Verifying encoding-decoding 
on validation set
○ Distributions of input vs generated 

from decoder

● Good agreement, with small 
discrepancy here and there

● Best autoencoder is not 
necessarily the best anomaly 
detector



Defining 
anomaly

28

● Anomaly defined by a 
p-value threshold on 
a given test statistics

● VAE loss function is 
the natural choice for 
the test statistics

Loss
reco

 used as test statistics.



Not a tail-cut 
algorithm

● Selected events stand 
on the core of 1D 
distributions

● Expand the possibility 
w.t.r. to classical 
anomaly detection 
triggers
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SM
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Conclusions 30

● VAE as model-independent BSM trigger

○ Train just on SM, no need to specify 
a BSM model

○ Can be trained on data

● Select 30 events/day and create a 
dataset of anomalous events 

○ Further study within and outside the 
collaborations

● Allows (benchmark models) to probe 
10-100 pb cross section

○ Alternative strategy, parallel to 
canonical approaches

● Might open new physics directions



BACKUP
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The Variational Auto-Encoder (1/2)
32

Working hypothesis:
● Each event has a set of features: x ∈ ℝn

● Relevant information can be summarized in: z ∈ ℝm (n>m)

○ Lost information for is somehow stored in the 
encoding/decoding function

x

Real world

z
“Compressed” 

abstraction

Unknown 
transform.

Goal:
● Creating a function that, ON THE STD DATASET, allow to 

consistently compress and decompress the event information

○ the VAE should underperform on a different dataset because 
the lost information is different from the one of the training

● Consistency can be directly checked by comparing input and output

x

z

<x>

VAE



Training loss function technicalities
33

Regularization term:

● Force the z distribution to a Normal

● To avoid strange latent variable

Reconstruction likelihood :

● “True” loss (NLL)

● Force the autoencoded distribution to 
describe the x

● The goodness of the VAE depends on 
the ability of f

j
 to describe p(x | z)



The Variational Auto-Encoder
34

Decoder:
● For each value of z, tell what is the pdf of x

● Practically:

○  A functional form f
d
[x; α

d
(z)] is fixed

The encoder function g
d
: z ⟶ α

d
 gives 

the value of the x distribution parameters 

!!: x and z are 

swapped w.t.r. to 

Encoder

Encoder:
● For each value of x, tell what is the pdf of z

● Practically:

○  A functional form f
e
[z; α

e
(x)] is fixed

The encoder function g
e
: x ⟶ α

e
 gives 

the value of the z distribution parameters 



35...and architecture details

Input (x) : 21 HLF (H
T
, MET, nJets, …)

x’ pdf: max 1-3 
parameters

● Gaussian
● Binomial
● ...

A whole art exist in choosing 
the functional form

2 dense hidden layer (50 neurons)

4-dim latent (z) 
space

● Trainable mean 
and sigma 



● Optimizer
○ Adam
○ Callbacks

● Samples
○ 3.5 M event for training
○ 3.5 M for validation
○ # evt/# par >> 10 

● The training
○ Not long, about 1h
○ Spike not unusual
○ Delicate equilibrium of training parameters
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Training: not a easy beast



Latent space distribution
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Ops. conditions
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Simulation details:

● Pythia 8
● Delphes

○ CMS phase II default 
card

● Training on 3.5 M of SM
○ Equivalent of 100 pb-1

Machine working conditions:

● 8 months of data taking 
per year

● L
TOT

 = 40 fb-1

● <L
inst

> = 2.8 ・1033 cm-2s-1

● <PU> = 20
● E

CM
 = 13 TeV



The 21 considered features
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VAE auto-encoding 
cross-check
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Not a tail-cut algorithm
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Other algorithms comparison
42

---  PCA         ⎯⎯⎯  VAE ---  AE         ⎯⎯⎯  VAE



Scenario w/o the VAE trigger
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Reasonable cuts for single muon full 
trigger path (i.e. what we can really 
save on disk):

● p
T
 > 27 GeV

● ISO < 0.25

SM A→ 4ℓ h→ 𝜏𝜏 h→ 𝜏𝜈 LQ

VAE 5e-6 3e-3 4e-4 1e-3 7e-4

Single 
muon 
trigger

0.6 0.5 0.6 0.7 0.6

VAE trigger improves S/N ratio 
of 2-3 order of magnitude

Efficiency

The great advantage of VAE is not only the ability to select BSM events but also to 
produce a high purity sample



Checking the convergence: sum of pdfs
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High input dimension ⇒ Global convergence check

Obtain the distribution of the input as sum of all the predicted pdf

x (input) Prediction
Predicted pdf 
for the single 

event

=
+ +

+ + ...



Particle Based VAE
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Particle based VAE performance
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