ACAT 2019, Saas Fee (Ch), March 14th 2019

Variational Autoencoders for New Physics Mining at the LHC

Olmo Cerri^a, T. Q. Nguyen^a, M. Pierini^b, M. Spiropulu^a, and J. R. Vlimant^a

^a California Institute of Technology, ^b CERN

Model-independent tagger for unexpected events

Save events that does not come from SM processes, despite their nature or particular features

- 1. Set the stage
- 2. Results overview

3. How it works

4. Performances

Physics anomaly detection

- Data mining concept
 - Often: PCA, AE
- Based on Variational Auto-Encoders [1]

- Define what is "standard" through a set of example events
 - The Standard Model

- 2. Fit a function which gives the p-value of belonging to the standard set
 - No assumption on the anomaly
 - Completely agnostic on BSM

- 3. Use this function to tag new events
 - Anomaly: low probability of belonging to the standard set
 - SM tails or BSM

A use case: ℓ+X

- Stream of data with at least one interesting lepton (e or μ)
 - \circ p_T > 23 GeV & ISO < 0.45
- SM contribution:

Process	Event fraction in the stream	Events/month
W	59%	110M
QCD	34%	63M
Z	6.7%	12M
tt	0.3%	0.6M

- Events represented by 21 high level features (HLF)
 - o Broad general choice, not BSM tailored

A use case: ℓ+X

- Stream of data with at least one interesting lepton (e or μ)
 - \circ p_T > 23 GeV & ISO < 0.45
- SM contribution:

Process	Event fraction	Events/month		
	in the stream	LVEIILS/IIIOIILII		
	W	59%	110 M	
	QCD	34%	63M	
	Z	6.7%	12M	
	tt	0.3%	0.6M	

- Events represented by 21 high level features (HLF)
 - Broad general choice, not BSM tailored

A use case: ℓ+X

- Stream of data with at interesting lepton (e o
 - $p_T > 23 \text{ GeV & ISO} < 0.$ 10⁻²
- SM contribution:

Process	Event fraction in the stream	10 ⁻⁶
W	59%	U
QCD	34%	
Z	6.7%	12M
tt	0.3%	0.6M

 10^{-4}

- Events represented by 21 high level features (HLF)
 - Broad general choice, not BSM tailored

How to deploy it

- VAE trained only on SM
- VAE does not see the BSM (if any) until it's evaluated on new events

- 1. Train one (or more) VAE(s):
 - a. Train on MC (pure SM)
 - o. Training on data (robust against signal injection)

- 2. Put the VAE(s) online in the trigger
 - a. Evaluate each event
 - b. Acceptance threshold such that O(10) SM events/day are triggered

- Collect events in a dedicated dataset
 - a. Visual inspection
 - b. Develop targeted analysis

BSM benchmark models

Light BSM which are usually very hard to trigger with standard strategies

- A \rightarrow 4 ℓ : neutral scalar, M = 50 GeV
- LQ→ bT: leptoquark, M = 80 GeV
- $h^0 \rightarrow TT$: neutral scalar, M = 60 GeV
- $h^{\pm} \rightarrow TV$: charged scalar, M = 60 GeV

BENCHMARKING ONLY, NOT USED FOR TRAINING

Given the model independent nature, there is no unique way to define benchmarks.

 $\varepsilon_{SM} = 5.4 \cdot 10^{-6} \Leftrightarrow 30 \text{ evts/day}$

VAE

- A single one, trained only on SM
- Applied to all the BSM

--- Model dep. —— VAE

 $\varepsilon_{\rm SM} = 5.4 \cdot 10^{-6} \Leftrightarrow 30 \text{ evts/day}$

VAE

- A single one, trained only on SM
- Applied to all the BSM
- Model dependent clf
 - 4 in total, each one trained on a specific BSM vs SM
 - Set target performances

 $\varepsilon_{\rm SM} = 5.4 \cdot 10^{-6} \Leftrightarrow 30 \text{ evts/day}$

VAE

- A single one, trained only on SM
- Applied to all the BSM
- Model dependent clf
 - 4 in total, each one trained on a specific BSM vs SM
 - Set target performances
- Model dep. clf applied to a different BSM model

--- Model dep. ——VAE

	Standard Model processes					
Process	VAE selection	Event/month				
\overline{W}	$3.6 \pm 0.7 \cdot 10^{-6}$	32%	379 ± 74			
QCD	$6.0 \pm 2.3 \cdot 10^{-6}$	29%	357 ± 143			
Z	$21 \pm 3.5 \cdot 10^{-6}$	21%	256 ± 43			
$tar{t}$	$400 \pm 9 \cdot 10^{-6}$	18%	212 ± 5			
Tot			1204 ± 167			

BSM benchmark processes					
Process	VAE selection	Cross-section			
	efficiency 100 events/month [pb]		S/B = 1/3 [pb]		
$A \rightarrow 4\ell$	$2.8 \cdot 10^{-3}$	7.1	27		
$LQ \to b\tau$	$6.7 \cdot 10^{-4}$	30	110		
$h^0 o au au$	$3.6 \cdot 10^{-4}$	55	210		
$h^{\pm} \to \tau \nu$	$1.2 \cdot 10^{-3}$	17	65		

Efficiency drop ≤ 10 w.t.r. to model-dependent classifier (i.e. optimal limit)

Train on data

If BSM is rare enough, having it in the training sample will not spoil performances.

Train on a dataset with signal injected:

Injected evts	Training set fraction	VAE selected evts/month	Anomaly fraction	
700	2 · 10 - 4	134	12%	
7k	2·10 ⁻³	957	48%	
70k	2·10 ⁻²	6	0.6%	

• SM size: 3.5M evts \approx 100 pb⁻¹ \approx few hours

No performance drop up to 10^{-3} signal contamination in training set (<u>huge, S/B = 1</u>):

⇒ Can be trained on data without impacting BSM efficiency

Let's open the box

Auto-encoders in one slide

 Data coding algorithms which learn to describe a given dataset in a latent space

 Unsupervised algorithm, used for data compression, generation, clustering, etc.

 Anomaly: any event whose output is "far" from the input

Convergence check: SM auto-encoding

- Verifying encoding-decoding on validation set
 - Distributions of input vs generated from decoder

 Good agreement, with small discrepancy here and there

 Best autoencoder is not necessarily the best anomaly detector

Defining anomaly

 Anomaly defined by a p-value threshold on a given test statistics

 VAE loss function is the natural choice for the test statistics

Loss_{reco} used as test statistics.

Not a tail-cut algorithm

 Selected events stand on the core of 1D distributions

 Expand the possibility w.t.r. to classical anomaly detection triggers

Conclusions

- VAE as model-independent BSM trigger
 - Train just on SM, no need to specify a BSM model
 - Can be trained on data
- Select 30 events/day and create a dataset of anomalous events
 - Further study within and outside the collaborations
- Allows (benchmark models) to probe
 10-100 pb cross section
 - Alternative strategy, parallel to canonical approaches
- Might open new physics directions

Standard Model processes					
Process	VAE selection	Sample composition	Event/month		
\overline{W}	$3.6 \pm 0.7 \cdot 10^{-6}$	32%	379 ± 74		
QCD	$6.0 \pm 2.3 \cdot 10^{-6}$	29%	357 ± 143		
Z	$21 \pm 3.5 \cdot 10^{-6}$	21%	256 ± 43		
$t ar{t}$	$400 \pm 9 \cdot 10^{-6}$	18%	212 ± 5		
Tot			1204 ± 167		

BSM benchmark processes					
Process	VAE selection	Cross-section	Cross-section		
	efficiency	100 events/month [pb]	S/B = 1/3 [pb]		
$A \to 4\ell$	$2.8 \cdot 10^{-3}$	7.1	27		
$LQ \to b\tau$	$6.7 \cdot 10^{-4}$	30	110		
$h^0 \to au au$	$3.6 \cdot 10^{-4}$	55	210		
$h^\pm o au u$	$1.2 \cdot 10^{-3}$	17	65		

BACKUP

Working hypothesis:

- Each event has a set of features: $\underline{x} \in \mathbb{R}^n$
- Relevant information can be summarized in: $\underline{z} \in \mathbb{R}^m$ (n>m)
 - Lost information for is somehow stored in the encoding/decoding function

Goal:

- Creating a function that, ON THE STD DATASET, allow to consistently compress and decompress the event information
 - the VAE should underperform on a different dataset because the lost information is different from the one of the training
- Consistency can be directly checked by comparing input and output

Training loss function technicalities

$$Loss_{Tot} = Loss_{reco} + \lambda D_{KL}$$

Reconstruction likelihood:

- "True" loss (NLL)
- Force the autoencoded distribution to describe the <u>x</u>
- The goodness of the VAE depends on the ability of f_j to describe $p(\underline{x} \mid \underline{z})$

$$Loss_{reco} = -\frac{1}{k} \sum_{i} \ln \left(P(x \mid \alpha_1, \alpha_2, \alpha_3) \right)$$
$$= -\frac{1}{k} \sum_{i,j} \ln \left(f_j(x_{i,j} \mid \alpha_1^{i,j}, \alpha_2^{i,j}, \alpha_3^{i,j}) \right)$$

Regularization term:

- Force the \underline{z} distribution to a Normal
- To avoid strange latent variable

$$D_{\text{KL}} = \frac{1}{k} \sum_{i} D_{\text{KL}} \left(N(\mu_z^i, \sigma_z^i) \mid\mid N(\mu_P, \sigma_P) \right)$$

Encoder:

- For each value of \underline{x} , tell what is the pdf of \underline{z}
- Practically:
 - A functional form $f_e[\underline{z}; \alpha_e(\underline{x})]$ is fixed

Decoder:

- For each value of \underline{z} , tell what is the pdf of \underline{x}
- Practically:
 - A functional form $f_d[\underline{x}; \alpha_d(\underline{z})]$ is fixed

The encoder function $g_e: \underline{X} \longrightarrow \alpha_e$ gives the value of the \underline{z} distribution parameters

The encoder function g_d : $\underline{Z} \rightarrow \alpha_d$ gives the value of the \underline{x} distribution parameters

...and architecture details

Training: not a easy beast

Optimizer

- Adam
- Callbacks

Samples

- 3.5 M event for training
- 3.5 M for validation
- 0 # evt/# par >> 10

The training

- Not long, about 1h
- Spike not unusual
- Delicate equilibrium of training parameters

Latent space distribution

Ops. conditions

Simulation details:

- Pythia 8
- Delphes
 - CMS phase II default card
- Training on 3.5 M of SM
 - Equivalent of 100 pb⁻¹

Machine working conditions:

- 8 months of data taking per year
- $L_{TOT} = 40 \text{ fb}^{-1}$
- $\langle L_{inst} \rangle = 2.8 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- PU > 20
- \bullet E_{CM} = 13 TeV

The 21 considered features

- The absolute value of the isolated-lepton transverse momentum p_T^{ℓ} .
- The three isolation quantities (CHPFISO, NEUPFISO, GAMMAPFISO) for the isolated lepton, computed with respect to charged particles, neutral hadrons and photons, respectively.
- The lepton charge.
- A Boolean flag (ISELE) set to 1 when the trigger lepton is an electron, 0 otherwise.
- S_T , i.e. the scalar sum of the p_T of all the jets, leptons, and photons in the event with $p_T > 30$ GeV and $|\eta| < 2.6$. Jets are clustered from the reconstructed PF candidates, using the FASTJET [24] implementation of the anti- k_T jet algorithm [25], with jet-size parameter R=0.4.
- The number of jets entering the S_T sum (N_J) .
- The invariant mass of the set of jets entering the S_T sum (M_J) .
- The number of these jets being identified as originating from a b quark (N_b) .
- The missing transverse momentum, decomposed into its parallel $(p_{T,\parallel}^{\text{miss}})$ and orthogonal $(p_{T,\perp}^{\text{miss}})$ components with respect to the isolated lepton direction. The missing transverse momentum is defined as the negative sum of the PF-candidate p_T vectors:

$$\vec{p}_T^{\text{miss}} = -\sum_q \vec{p}_T^{\ q} \ . \tag{2}$$

• The transverse mass, M_T , of the isolated lepton ℓ and the E_T^{miss} system, defined as:

$$M_T = \sqrt{2p_T^{\ell} E_T^{\text{miss}} (1 - \cos \Delta \phi)} , \qquad (3)$$

with $\Delta\phi$ the azimuth separation between the $\vec{p}_T^{\,\ell}$ and $\vec{p}_T^{\,\mathrm{miss}}$ vectors, and $E_T^{\,\mathrm{miss}}$ the absolute value of $\vec{p}_T^{\,\mathrm{miss}}$.

- The number of selected muons (N_{μ}) .
- The invariant mass of this set of muons (M_{μ}) .
- The absolute value of the total transverse momentum of these muons $(p_{T,TOT}^{\mu})$.
- The number of selected electrons (N_e) .
- The invariant mass of this set of electrons (M_e) .
- ullet The absolute value of the total transverse momentum of these electrons $(p_{T,TOT}^e)$.
- The number of reconstructed charged hadrons.
- The number of reconstructed neutral hadrons.

VAE auto-encoding cross-check

Not a tail-cut algorithm

Other algorithms comparison

Scenario w/o the VAE trigger

Reasonable cuts for single muon full trigger path (i.e. what we can really save on disk):

- $p_T > 27 \text{ GeV}$
- ISO < 0.25

Efficiency

	SM	A→ 4ℓ	$h \rightarrow \tau \tau$	$h \rightarrow \tau v$	LQ
VAE	5e-6	3e-3	4e-4	1e-3	7e-4
Single muon trigger	0.6	0.5	0.6	0.7	0.6

VAE trigger improves S/N ratio of 2–3 order of magnitude

The great advantage of VAE is not only the ability to select BSM events but also to produce a high purity sample

Checking the convergence: sum of pdfs

High input dimension ⇒ Global convergence check

Obtain the distribution of the input as sum of all the predicted pdf

Attentional Particle-VAE

 Attention: a function of both list of input particles and the current hidden state of the decoder's RNN cell.

Performance (2/2)

- Roughly 10 times worse than the VAE trained on HLFs.
- Optimization in progress, could be improved much further (more data + optimized loss functions).

```
SM p-value cutoff: 1.0E-5
                                               evts/month
  Sample
             Efficiency
                               Rate [Hz]
                                           4.8E+3 +/- 3.2E+2
          2.3E-3 +/- 1.5E-4
                                 5.7E-3
  ttbar
                                           2.1E+3 +/- 2.1E+3
                                 2.5E-3
  OCD
         1.0E-5 +/- 1.0E-5
                                           0.0E+1 +/- 0.0E+1
  Wlnu
          0.0E+1 +/- 0.0E+1
                                 0.0E+1
Expected evts/month: 6883 +/- 5228
                       Efficiency
                                     xsec (10 evts/month) [fb] | xsec (S/B = 0.3) [fb]
      Sample
                  3.3e-4 + / - 8.6e-5
     Ato41
                                                 7.2E+3
                                                                           1.5E+6
   leptoquark
                   5.8e-4 + /- 7.6e-5
                                                 4.1E+3
                                                                           8.5E+5
 HiggsToTauTau
                 1.1e-3 +/- 1.5e-4
                                                 2.2E+3
                                                                           4.5E+5
  ChHiggsToTauNu
                                                 1.7E+3
                                                                           3.4E+5
```