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The Challenge of Charged
Particle Tracking at the HL-LHC
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Hits associated to found tracks only.
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« Explosion of hit combinatorics in both seeding and stepping pattern recognition
* Highly time consumlng task in extracting physics content from LHC data
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Cost of Tracking

 CPU time consumption in HL-LHC era surpasses computing budget
> Need for faster algorithms
« Charged particle track reconstruction is one of the most CPU consuming
task in event reconstruction
> Optimizations mostly saturated
 Large fraction of CPU required in the HLT. Cannot perform tracking
inclusively
> Approximation allowed in the trigger
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Fast Hardware Tracking

» Track trigger implementation for Trigger ——
upgrades development on-going i

« Several approaches investigated _ =

 Dedicated hardware is the key to fast sus |
computation.

* Not applicable for offline processing unless
through adopting heterogeneous computing.
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Deep Learning Approaches
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Charged Particle Tracking Dataset

« This work uses the public
HeDa00 dataset of the TrackML

Prize Money

Particle Tracking Challenge
(Kaggle, codalab).

CERN - 656 teams - a month-age

Overview Data Kernels Discussion Leaderboard Rules Team Host My Submissions

« * Simulating the dense
- N environment expected for
.. HLHLC. Average of 200
| Gery proton-proton interaction per
bunch crossing.

Timeline observing these collisions with intricate silicon

Prizes detectors.

While orchestrating the collisions and
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observations is already a massive scientific
accomplishment, analyzing the enormous

amounts of data produced from the experiments f\rq-:l-:l)zli sponsors

is becoming an overwhelming challenge.

Event rates have already reached hundreds of
millions of collisions per second, meaning physicists must sift through tens of petabytes of data per year.

And, as the resolution of detectors improve, ever better software is needed for real-time pre-processing
and filtering of the most promising events, producing even more data.
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https://www.kaggle.com/c/trackml-particle-identification
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Motivation

» Classical charged particle tracking algorithms
suffer from combinatorial explosion

 Embrace the combinatorics considering all
possible branches of track candidates, and
solve the complex optimization problem with
gquantum annealing
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The D-Wave
Computing System
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D-Wave 2X™

1098 qubits
Operates at 15mK
Anneals in 5-20 ys
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qubit and qubit
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Quantum Circuits Quantum Annealing
Series of quantum gates Evolution of a quantum
operating on a set of system to a low T Gibbs state
guantum states. That's D-Wave !
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Quantum Annealing
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Adiabatic Quantum Annealing

- System setup with trivial hamiltonian H(0) and ground state
> Evolve adiabatically the hamiltonian towards the desired
Hamiltonian Hp

- Adiabatic theorem : with a slow evolution of the system, the
state stays in the ground state.

Setup Hamiltonian: H(0) Problem Hamiltonian: H,,

Uniform superposition of State minimizing the energy
possible qubit states of the problem
Hamiltonian

100% -
90% -
80% -
70%
60% -
50% -
40%
30%
20% -
10% -
0%

H(t) = A(t)H(0) + B(t)Hp T=tinr
https://arxiv.org/abs/quant-ph/0001106
https //arX|v org/abs/quant ph/O1 04129
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https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/quant-ph/0104129

Space of Hamiltonian

Runs over all
quBit pairs

E : z E : z __z
HISing — higi -+ Jz'jO'i O'j
) 19

External Interactions
magnetic field

Runs over ~ ~1000 qubits on chimera graph can
adjacent quBits only encode ~40 qubits full Ising

_ Z A Hamiltonian
Hising = E hio; + g Jijo; o

> Quadratic Unconstrained Binary

2 ] Optimization (QUBO) can be
mapped to an Ising Hamiltonian
External Interactions with change of variable {0,1}<{-1,1}

magnetic field

03/11/19 15




Ising Model Heuristic Solution

* Monte-Carlo based method to find ground state
of energy functions
« Random walk across phase space
> accepting descent
> accepting ascent with probability e2&kT
* Decrease T with time

Temperature
A

<

Applied to the QUBO problem, and finds the
grour]_ql state. SA in the legends.

03/11/19
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Charged Particle Tracking using
Adiabatic Quantum Annealing

See also H. Gray et al.
https://indico.cern.ch/event/708041/contributions/3308730/

03/11/19
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Hopfield Network Approach

@ fully-connected, single-layer NN;

@ Developed by John Hopfield in 1982 \/‘}_
complete graph =

@ vertices: n binary units, {s,} € {0,1}"

@ edges: symmetric weight matrix,
w € R” x R"

@ energy associated with each network
configuration (assignment of units):

1
E= —EZWUS,-SJ- QUBO!
I,J
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Framing the Problem

« Segment = pair of hits on
consecutive layers of the detector

» Assign a boolean to each segment
representing whether the segment is
within a track or not

 Limits the number of hits/segments
> Separating the hits in 16 sector in ¢
> pre-filtering the segments on A¢ and
Az to reduce the number of spurious
bad segments

6abc -
b
’ e Segment opening in r-phi-z plane in

which helical segments are aligned

Tab « Azimuthal angle in cartesian
coordinate in which high pT tracks
segments are straight

03/11/19 19




Segment QUBO

Helix Term High pT Term Beam spot Term
Segments along Aligned pair Segment pointing at
an helix of segments the origin
“g\\\t:lh.____ ____ZZi_ ‘r"”’/”/)"
COS)\ 6abc—|_p Coskq)abc Zc_Za -
+n Zc_rc Sab Sbc
a,b,c rab+rbc rc_ra
Ta Z SabSac+ Z S ae She +Z(ﬁ+yp Sab)
a,b#c a#b,c
4/ 4/ \A
Bifurcation Term Inhibition Term GP Term
No shared hits Reduced number Use the quality
on valid segment of segments of segment

03/11/19
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Resolving Sub-Group

 Full all-to-all QUBO problem cannot fit on dWave. Aim at identifying
sub-groups of segments that can fit on the hardware

* Train a gaussian kernel density
estimator on true single segment

» Aiming at reducing the number of
false segments, retaining

- Force segment off based on cosB_ _
-cosB _=0if6__>86,
* 5 best neighbors
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QA-Tracking Workflow

k/ //Iiesolving\ N
- Sub-group (60)/

e //Iiesolving\\
- Sub-group (91)/

03/11/19
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Performance

« Simulated annealing and
Quantum annealing are in
perfect agreement at 200 tracks

« Simulated annealing solves the
exact problem at all multiplicity

 Limitation on number of qubits
prevents from solving events
beyond 200 tracks on Dwave ;
solving a contrive problem

 Purity and Efficiency are
measured with respect to true
tracks with at least three hits

> Promising tracking efficiency for
the algorithm up to 2000 tracks
per event

03/11/19
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Conclusion

« QMLQCF Scouting for applications of quantum
annealing (among others) in HEP

» Charged particle tracking interpreted as a
segment classification can be expressed in a
QUBO problem

* Experimentation on dWave imposes some
stringent algorithmic restrictions

 Limited hardware size limits the complexity of the
problem that can be solved

03/11/19 24
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Problem Parameters Optimization

» Parameters of the hamiltonian are tuned using
bayesian optimization, modeling the figure of merit
with gaussian processes.

* Accuracy (# of properly labeled / # of segments)
use as f.o.m

* Global inhibition model : a=3.E=, f=2.63E2%, A=7

e Threshold model : a=5.E7, B=1.E®, A=7

03/11/19 26




Edge Aff nity

- Helical bias: tracks are straight in cylindrical coordinates

- Momentum bias: high-PT tracks are straight in rectangular
coordinates

- Short-edge bias: long tracks of short edge segments

Helical bias Momentum bias
eab o (cylindrical angle) (rectangular angle)
The t 1

cos? 8, + p cos? Py
Z SabSbc

rab Y Tab T The

E

Short-edge bias  Ising variables (1 or 0)




r (mm)

Cross-Term Penalties

- Beam spot penalty: penalize tracks that originate further from the
origin

1000

Z-intercept penalty

800
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400 ~

200 -

0_
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Single-Edge Bias

- Global inhibition: limits total number of edges turned on
- Prior probability: Bayesian prior based on edge position in rz-plane

- Computed using Gaussian kernel density estimation

Global inhibition Bayesian prior
D 18 +¥P(sa)lsas

a,b

0.020

0.015
PDF

0.010

—

Ising variable (1 or 0)

0.005
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Extra Material
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The D-Wave Company

D:.\JJaUE COMPANY + TECHNOLOGY = COMPUTING ~ RESOURCES ~ NEWS ~

The Quantum Computing Company™

Welcome to the Future

Quantum Computing for the Real World Today

https://www.dwavesys.com/

1999 Founded

2011 D-Wave One : 128 qubits
2013 D-Wave Two : 512 qubits
2015 D-Wave 2X : 1000 qubits
2017 D-Wave 2000Q : 2000 qubits
20197 5000 qubits ?

“AENT
Pt
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D-Wave Hamiltonian
And
himera Graph

33



D-Wave Hamiltonian

Runs over
adjacent quBits

< A/

External Interactions
magnetic field

03/11/19
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D-Wave qubit Adjacency

Active qubits in green
Coupling to 5-6 qubits
Inactive qubits in red
Not a fully conne
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Model Embedding
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Full Ising Model

_—

« Split local fields across all
qgubits in the chain
» Tightly couple (J_=6)

- ® y—o— o * Create chains of spins through
ses = 'es @' | thechimera graph

ﬁ?}‘k‘e — ! R

* Non-unique embedding.
Heuristic approach.

e Suppressing spin flip within
chain as error correction.
* Use majority vote

i
1>

_—

> Approximately full Ising Model
with ~<40 spins

03/11/19 37



https://arxiv.org/abs/1210.8395

Ising Hamiltonian

Runs over all
quBit pairs

< A/

External Interactions
magnetic field
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High Luminosity LHC
The Challenge

39



HL-LHC Challenge

<PU>=140-200
10x more hits
Circa 2025

« CPU time extrapolation into HL-LHC era far surpasses growth in
computing budget

* Need for faster algorithms

« Approximation allowed in the trigger

03/11/19 40
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Complexity and Ambiguity

- . -
| " s Ll El o
- = r

“, . _“shown frajeciories are reconstructed objects
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Tracking Not In a Nutshell

* Hits preparation
* Seeding

* Pattern recognition

Several Times

* Track fitting

* Track cleaning

03/11/19
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Hit Preparation

pixel detector strip detector

using beam spot
assumption

Calculate the hit position from barycenter of charg
deOS |tS first NN output

A% pN=1): 0168 pN=):0829  p(N>2): 0.203

Use of neural net classifier to split cluster in ATLAS 5_ Ui

Access to trajectory local parameter from cluster _

shape T

Remove hits from previous tracking iterations L bbbttt
Lo

HL-LHC design include double layers giving more SanpischensaRepit

constraints on the local trajectory parameters

03/11/19 44




Seeding

 Combinatorics of 2 or 3 hits
with tight/loose constraints
to the beam spot or vertex

« Seed cleaning/purity plays
In an important in reducing
the CPU requirements of
sub-sequent steps
> Consider pixel cluster

shape and charge to
remove incompatible
seeds

* Initial track parameters from
helix fit

03/11/19 45




Pattern Recognition

« Use of the Kalman filter
formalism with weight matrix

* |[dentify possible next layers
4 N from geometrical considerations

« Combinatorics with compatibles
hits, retain N best candidates

* No smoothing procedure

* Resilient to missing modules

 Hits are mostly belonging to one
track and one track only

 Hit sharing can happen in dense
events, in the innermost part

» #its from low momentum
z 46
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Kalman Filter

 Trajectory state propagation
done either
v Analytical (helix, fastest)
» Stepping helix (fast)
4 Y\ v Runge-Kutta (slow)
Ky = CopiHy," (Vi + HiCop (H,) « Material effect added to
trajectory state covariance
* Projection matrix of local helix
parameters onto module surface
> Trivial expression due to local
helix parametrisation

Pux = Prg-1+ Ky (my — Hpppp—q)
Ck|k—] = -KH k)ck|k—1

H |, is the projection matrix

V'} is the hit covariance matrix  Hits covariance matrix for pixel
P;j is the trajectory state at i given j and stereo hits properly formed
C ilj is the trajectory state covariance matrix ati givenj | * ISSU_e W'_th St”p hits .and
\ / longitudinal error being non

gaussian (square)

03/11/19 47




Track Fitting

e Use of the Kalman filter
formalism with weight
- ~  Mmatrix

» Use of smoothing
procedure to identify
outliers

Particle’ s parameters
(q(p;lambda}lphi,do,dzjl

 Field non uniformity are
taken into account

. /» Detector alignment
taken into account

03/11/19 48




Cleaning, Selection

* Track quality
estimated using
g \ ranking or
classification method
>Use of MVA

 Hits from high quality
tracks are remove
for the next iterations
where applicable

03/11/19 49
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A Charged Particle
Journey
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First order effect : electromagnetic elastic
interaction of the charge particle with nuclei (heavy
and multiply charged) and electrons (light and
single charged)

Second order effect : inelastic interaction with
nucleil.

03/11/19 51




Magnetic Field

» Magnetic fieldB acts on charged particles
iIn motion : Lorentz Force

e The solution in uniform magnetic field is
4 an helix along the field : 5 parameters

* Helix radius proportional to the component
of momentum perpendicular to B

‘F/‘L PN\ i o .
e Separate particles in dense environment
\" > Bending induces radiation :
X 3 B} » bremsstrahlung
F=q-{xB]

> The magnetic field has to be known to a
good precision for accurate tracking of
particle

03/11/19 52
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Multiple Scattering

» Deflection on nuclei (effect from
v electron are negligible)

.’“C;Iosest
.~ approach

M L « Addition of scattering processes

« Gaussian approximation valid for
substantial material traversed

Gaussian Approximation

“ ' " _(13.6M0VJ2 X

Y

I g ,Bcp fYo
N \ B -particle velocity
;u p — material density

P - particle momenta
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Bremsstrahlung

» Electromagnetic radiation of

charged particles under acceleration

due to nuclei charge

 Significant at low mass or high
energy

* Discontinuity in energy loss
spectrum due to photon emission
and track curvature

> Can be observed as kink in the
trajectory or presence of collinear
energetic photons
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Energy Loss

e Momentum transfer to electrons when
traversing material (effect of nuclei is
negligible

., * Energy loss at low momentum
dE | dx =k, z 12 p[ln{wJ— ik _5] depends on mass : can be used as
AP 1(1=47) 2)  mass spectrometer

B -particle velocity

p — material density

Z - atomic number of absorber
A — mass number of absorber

I — mean excitation energy

d — density effect correction factor — material
dependent and B dependent

dE/dx in TPC (arb. units)
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Summary on Material Effects

* Collective effects can be estimated
statistically and taken into account in how they
modify the trajectory

* Bremstrahlung and nuclear interactions
significantly distort trajectories

03/11/19
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