Charged Particle Tracking as a QUBO Problem Solved with Quantum Annealing-inspired Optimization

ACAT, Saas-Fee, March 10-15 2019

Jean-Roch Vlimant on behalf of the QMLQCF project team
Special credits to Abhishek Anand and Alexander Zlokapa
Outline

- Forewords on charged particle tracking and dataset
- Introduction to D-Wave and quantum annealing
- Hopfield Network and segment classification as a QUBO problem
- Results and outlooks
The Challenge of Charged Particle Tracking at the HL-LHC
Tracking in a Nutshell

- Particle trajectory bended in a solenoid magnetic field
- Curvature is a proxy to momentum
- Particle ionize silicon pixel and strip throughout several concentric layers
- **Thousands of sparse hits**
- Lots of hit pollution from low momentum, secondary particles

- **Explosion of hit combinatorics** in both seeding and stepping pattern recognition
- **Highly time consuming task** in extracting physics content from LHC data
Cost of Tracking

• CPU time consumption in HL-LHC era **surpasses computing budget**
 → Need for **faster algorithms**
• Charged particle track reconstruction is one of the most **CPU consuming task** in event reconstruction
 → Optimizations **mostly saturated**
• Large fraction of CPU required in the HLT. **Cannot perform tracking inclusively**
 → **Approximation** allowed in the trigger

![Graph showing time/event vs. luminosity for CMS simulation](image1)

![Graph showing <μ> vs. job count for ATLAS](image2)

@HL-LHC <μ> >200
Fast Hardware Tracking

- Track trigger implementation for Trigger upgrades development on-going
- Several approaches investigated
- **Dedicated hardware is the key** to fast computation.
- **Not applicable for offline** processing unless through adopting heterogeneous computing.

![Kalman Filter in MaxJ](image1)

![Tracklets](image2)

Firmware Implementation - Bin
- Each bin represents a \sqrt{x} column in the HT array

Hough Transform
- Stubs ϕ_{st} at left boundary
- Sorts ϕ_{st} at right boundary
- Duplicates stubs if it belongs to two cells.
- Track Builder:
 - Sorts stubs in ϕ_{st} cells.
 - Marks ϕ_{st} cells with stubs in at least 4/5 layers.
- Hand Shake:
 - Controls read-out of candidates
Deep Learning Approaches

https://heptrkx.github.io/
https://indico.cern.ch/event/587955/contributions/2937540/

https://tinyurl.com/yb3v93y9
https://indico.cern.ch/event/587955/contributions/2937570/
Charged Particle Tracking Dataset

- This work uses the public dataset of the TrackML Particle Tracking Challenge (Kaggle, codalab).
- Simulating the dense environment expected for HL-HLC. Average of 200 proton-proton interaction per bunch crossing.

https://www.kaggle.com/c/trackml-particle-identification
https://competitions.codalab.org/competitions/20112
Motivation

• Classical charged particle tracking algorithms suffer from combinatorial explosion

• Embrace the combinatorics considering all possible branches of track candidates, and solve the complex optimization problem with quantum annealing
The D-Wave Computing System
D-Wave 2X™

1098 qubits
Operates at 15mK
Anneals in 5-20 μs
qubit and qubit

Quantum Circuits
Series of quantum gates operating on a set of quantum states.

Quantum Annealing
Evolution of a quantum system to a low T Gibbs state
That's D-Wave!
Quantum Annealing
Adiabatic Quantum Annealing

➢ System setup with trivial hamiltonian $H(0)$ and ground state
➢ Evolve adiabatically the hamiltonian towards the desired Hamiltonian H_p
➢ Adiabatic theorem: with a slow evolution of the system, the state stays in the ground state.

$$H(t) = A(t)H(0) + B(t)H_p$$

Space of Hamiltonian

\[H_{\text{Ising}} = \sum_i h_i \sigma_i^z + \sum_{i,j} J_{ij} \sigma_i^z \sigma_j^z \]

- \(H_{\text{Ising}} \) represents the Ising Hamiltonian.
- \(h_i \) and \(J_{ij} \) are external magnetic fields and interaction terms, respectively.
- \(\sigma_i^z \) and \(\sigma_j^z \) are Pauli Z operators for quubits.

Chimera graph embedding

- Runs over **all** quBit pairs
- Runs over **adjacent** quBits

- \(\sim 1000 \) qubits on chimera graph can only encode \(\sim 40 \) qubits full Ising Hamiltonian
- Quadratic Unconstrained Binary Optimization (QUBO) can be mapped to an Ising Hamiltonian with change of variable \(\{0,1\} \leftrightarrow \{-1,1\} \)
Ising Model Heuristic Solution

- Monte-Carlo based method to find ground state of energy functions
- Random walk across phase space
 - accepting descent
 - accepting ascent with probability $e^{-\Delta E/kT}$
- Decrease T with time

Applied to the QUBO problem, and finds the **ground state**. SA in the legends.
Charged Particle Tracking using Adiabatic Quantum Annealing

See also H. Gray et al.
https://indico.cern.ch/event/708041/contributions/3308730/
Hopfield Network Approach

- Developed by John Hopfield in 1982
- fully-connected, single-layer NN; complete graph
- vertices: \(n \) binary units, \(\{ s_n \} \in \{0, 1\}^n \)
- edges: symmetric weight matrix, \(w \in \mathbb{R}^n \times \mathbb{R}^n \)
- energy associated with each network configuration (assignment of units):
 \[
 E = -\frac{1}{2} \sum_{i,j} w_{ij} s_i s_j \quad \text{QUBO!}
 \]

[Peterson, 1989]
Framing the Problem

- **Segment** ≡ *pair of hits* on consecutive layers of the detector
- Assign a **boolean to each segment** representing whether the segment is within a track or not

- Limits the number of hits/segments
 - Separating the hits in **16 sector in φ**
 - Pre-filtering the segments on Δφ and Δz to reduce the number of spurious bad segments

- Segment opening in r-phi-z plane in which helical segments are aligned
- Azimuthal angle in cartesian coordinate in which high pT tracks segments are straight
Segment QUBO

Helix Term
Segments along an helix

\[
\sum_{a,b,c} \left(\frac{\cos^\lambda \theta_{abc} + \rho \cos^\lambda \phi_{abc}}{r_{ab} + r_{bc}} \right) s_{ab} s_{bc}
\]

High pT Term
Aligned pair of segments

\[
+ \eta \left(\frac{z_c - r_c}{r_c - r_a} \right) s_{ab} s_{bc}
\]

Beam spot Term
Segment pointing at the origin

\[
+ \alpha \left(\sum_{a,b \neq c} s_{ab} s_{ac} + \sum_{a \neq b,c} s_{ac} s_{bc} \right) + \sum_{a,b} \left(\beta + \gamma P(s_{ab}) \right) s_{ab}
\]

Bifurcation Term
No shared hits on valid segment

Inhibition Term
Reduced number of segments

GP Term
Use the quality of segment
Resolving Sub-Group

- Full all-to-all QUBO problem cannot fit on dWave. Aim at identifying sub-groups of segments that can fit on the hardware

- Train a gaussian kernel density estimator on true single segment
- Aiming at reducing the number of false segments, retaining

- Force segment off based on $\cos\theta_{abc}$
 - $\cos\theta_{abc} = 0$ if $\theta_{abc} > \theta_0$
- 5 best neighbors
- Solvable in polynomial time
QA-Tracking Workflow

1. Resolving Sub-group \((\theta_0)\)
2. Segment QUBO
3. Resolving Sub-group \((\theta_1)\)
4. Segment QUBO
Performance

- Simulated annealing and Quantum annealing are in perfect agreement at 200 tracks.
- Simulated annealing solves the exact problem at all multiplicity.
- Limitation on number of qubits prevents from solving events beyond 200 tracks on Dwave; solving a contrive problem.
- Purity and Efficiency are measured with respect to true tracks with at least three hits.

Promising tracking efficiency for the algorithm up to 2000 tracks per event.
Conclusion

- QMLQCF Scouting for applications of quantum annealing (among others) in HEP

- Charged particle tracking interpreted as a segment classification can be expressed in a QUBO problem

- Experimentation on dWave imposes some stringent algorithmic restrictions

- Limited hardware size limits the complexity of the problem that can be solved
Acknowledgments

This project is supported in part by the United States Department of Energy, Office of High Energy Physics Research Technology Computational HEP and Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359. The project is also supported in part under ARO grant number W911NF-12-1-0523 and NSF grant number INSPIRE-1551064. The work is supported in part by the AT&T Foundry Innovation Centers through INQNET, a program for accelerating quantum technologies. We wish to thank the Advanced Scientific Computing Research program of the DOE for the opportunity to first present and discuss this work at the ASCR workshop on Quantum Computing for Science (2015). Award Number: DE-SC0019227, Quantum Machine Learning and Quantum Computation Frameworks for HEP (QMLQCF), California Institute of Technology, Pasadena, CA

Part of this work was conducted at "iBanks", the AI GPU cluster at Caltech. We acknowledge NVIDIA, SuperMicro and the Kavli Foundation for their support of "iBanks".
Problem Parameters Optimization

- Parameters of the hamiltonian are tuned using bayesian optimization, modeling the figure of merit with gaussian processes.

- Accuracy (# of properly labeled / # of segments) use as f.o.m

- Global inhibition model: $\alpha=3.\times10^{-3}$, $\beta=2.63\times10^{-8}$, $\lambda=7$

- Threshold model: $\alpha=5.\times10^{-3}$, $\beta=1.\times10^{-6}$, $\lambda=7$
Edge Affinity

- Helical bias: tracks are straight in cylindrical coordinates
- Momentum bias: high-PT tracks are straight in rectangular coordinates
- Short-edge bias: long tracks of short edge segments

\[\sum_{a,b,c} \cos^\lambda \theta_{ab} + \rho \cos^\lambda \phi_{ab} \]

\[r_{ab} + r_{bc} \]

\[s_{ab}s_{bc} \]

\[\text{Short-edge bias} \]

\[\text{Ising variables (1 or 0)} \]
Cross-Term Penalties

- Beam spot penalty: penalize tracks that originate further from the origin

\[
\sum_{a,b,c} \eta \left(z_c - \frac{z_c - z_a}{r_c - r_a} r_c \right)^z s_{ab} s_{bc}
\]

Z-intercept penalty

Ising variables (1 or 0)
Single-Edge Bias

• Global inhibition: limits total number of edges turned on
• Prior probability: Bayesian prior based on edge position in \(rz \)-plane
 • Computed using Gaussian kernel density estimation

\[
\sum_{a,b} \left[\beta + \gamma P(s_{ab}) \right] s_{ab}
\]

Ising variable (1 or 0)
Extra Material
References

Kaggle.”TrackML Particle Tracking Challenge.” n.d. Web. <29 June 2018>
Welcome to the Future
Quantum Computing for the Real World Today

https://www.dwavesys.com/

1999 Founded
2011 D-Wave One : 128 qubits
2013 D-Wave Two : 512 qubits
2015 D-Wave 2X : 1000 qubits
2019? 5000 qubits ?
D-Wave Hamiltonian
And
Chimera Graph
D-Wave Hamiltonian

\[H_{\text{Ising}} = \sum_i h_i \sigma_i^z + \sum_{i,j} J_{ij} \sigma_i^z \sigma_j^z \]

- External magnetic field
- Interactions runs over adjacent qubits
D-Wave qubit Adjacency

Active qubits in green
Coupling to 5-6 qubits
Inactive qubits in red
Not a fully connected graph
Model Embedding
Full Ising Model

- Create chains of spins through the chimera graph
- Split local fields across all qubits in the chain
- Tightly couple ($J_F=6$)
- Non-unique embedding. Heuristic approach.
- Suppressing spin flip within chain as error correction.
- Use majority vote

➔ Approximately full Ising Model with ~<40 spins

https://arxiv.org/abs/1210.8395
Ising Hamiltonian

\[H_{\text{Ising}} = \sum_i h_i \sigma_i^z + \sum_{ij} J_{ij} \sigma_i^z \sigma_j^z \]

Runs over all quBit pairs

External magnetic field

Interactions
High Luminosity LHC
The Challenge
HL-LHC Challenge

- CPU time extrapolation into HL-LHC era far surpasses growth in computing budget
- Need for faster algorithms
- Approximation allowed in the trigger
Complexity and Ambiguity

Shown trajectories are reconstructed objects

The future holds much more hits
HEP.TrkX Approaches

End-to-end hit assignment

Track following with RNN

https://heptrkx.github.io/

https://tinyurl.com/y87saehf
Tracking **Not** In a Nutshell

- Hits preparation
- Seeding
- Pattern recognition
- Track fitting
- Track cleaning

Several Times
Hit Preparation

- Calculate the hit position from barycenter of charge deposits
- Use of neural net classifier to split cluster in ATLAS
- Access to trajectory local parameter from cluster shape
- Remove hits from previous tracking iterations
- HL-LHC design include double layers giving more constraints on the local trajectory parameters
Seeding

- Combinatorics of 2 or 3 hits with tight/loose constraints to the beam spot or vertex

- Seed cleaning/purity plays in an important in reducing the CPU requirements of subsequent steps
 - Consider pixel cluster shape and charge to remove incompatible seeds

- Initial track parameters from helix fit
Pattern Recognition

- Use of the Kalman filter formalism with weight matrix
- Identify possible next layers from geometrical considerations
- Combinatorics with compatibles hits, retain N best candidates
- No smoothing procedure
- Resilient to missing modules
- Hits are mostly belonging to one track and one track only
- Hit sharing can happen in dense events, in the innermost part
- Lots of hits from low momentum particles
Kalman Filter

- Trajectory state propagation done either
 - Analytical (helix, fastest)
 - Stepping helix (fast)
 - Runge-Kutta (slow)
- Material effect added to trajectory state covariance
- Projection matrix of local helix parameters onto module surface
 - Trivial expression due to local helix parametrisation
- Hits covariance matrix for pixel and stereo hits properly formed
 - Issue with strip hits and longitudinal error being non gaussian (square)

\[
K_k = C_{k|k-1} H_k \top (V_k + H_k C_{k|k-1} H_k \top)^{-1}
\]
\[
p_{k|k} = p_{k|k-1} + K_k (m_k - H_k p_{k|k-1})
\]
\[
C_{k|k-1} = (I - K_k H_k) C_{k|k-1}
\]

- H_k is the projection matrix
- V_k is the hit covariance matrix
- p_{ij} is the trajectory state at i given j
- C_{ij} is the trajectory state covariance matrix at i given j
Track Fitting

- Use of the Kalman filter formalism with weight matrix
- Use of smoothing procedure to identify outliers
- Field non uniformity are taken into account
- Detector alignment taken into account
Cleaning, Selection

- Track quality estimated using ranking or classification method

→ Use of MVA

- Hits from high quality tracks are removed for the next iterations where applicable
A Charged Particle Journey
First order effect: electromagnetic elastic interaction of the charge particle with nuclei (heavy and multiply charged) and electrons (light and single charged)

Second order effect: inelastic interaction with nuclei.
Magnetic Field

- Magnetic field B acts on charged particles in motion: Lorentz Force

- The solution in uniform magnetic field is an helix along the field: 5 parameters

- Helix radius proportional to the component of momentum perpendicular to B

- Separate particles in dense environment

 ➔ Bending induces radiation: bremsstrahlung

 ➔ The magnetic field has to be known to a good precision for accurate tracking of particle
Multiple Scattering

- **Deflection on nuclei** (effect from electron are negligible)
- Addition of scattering processes
- Gaussian approximation valid for substantial material traversed

Gaussian Approximation

\[\theta^2 = \left(\frac{13.6 \text{MeV}}{\beta c \rho} \right)^2 \times \frac{x}{X_0} \]

- \(\beta \) - particle velocity
- \(\rho \) - material density
- \(P \) - particle momenta
Bremsstrahlung

- Electromagnetic radiation of charged particles under acceleration due to nuclei charge
- Significant at low mass or high energy
- Discontinuity in energy loss spectrum due to photon emission and track curvature
 → Can be observed as kink in the trajectory or presence of collinear energetic photons
Energy Loss

- Momentum transfer to electrons when traversing material (effect of nuclei is negligible)

\[
dE / dx = k_1 \frac{Z}{A} \frac{1}{\beta^2} \rho \left(\ln \left(\frac{2m_e c^2 \beta^2}{I (1 - \beta^2)} \right) - \beta^2 - \frac{\delta}{2} \right)
\]

- Energy loss at low momentum depends on mass: can be used as mass spectrometer

\[\beta \text{ - particle velocity} \]
\[\rho \text{ - material density} \]
\[Z \text{ - atomic number of absorber} \]
\[A \text{ - mass number of absorber} \]
\[I \text{ - mean excitation energy} \]
\[\delta \text{ - density effect correction factor - material dependent and } \beta \text{ dependent} \]

ALICE Experiment
Summary on Material Effects

- Collective effects can be estimated statistically and taken into account in how they modify the trajectory

- Bremstrahlung and nuclear interactions significantly distort trajectories