
While these results are promising, it is still unclear whether the discovered activation functions
can successfully replace ReLU on challenging real world datasets. In order to validate the effec-
tiveness of the searches, in the rest of this work we focus on empirically evaluating the activation
function f(x) = x · �(�x), which we call Swish. We choose to extensively evaluate Swish in-
stead of max(x,�(x)) because early experimentation showed better generalization for Swish. In
the following sections, we analyze the properties of Swish and then conduct a thorough empirical
evaluation comparing Swish, ReLU, and other candidate baseline activation functions on number of
large models across a variety of tasks.

4 SWISH

To recap, Swish is defined as x · �(�x), where �(z) = (1 + exp(�z))�1 is the sigmoid function
and � is either a constant or a trainable parameter. Figure 4 plots the graph of Swish for different
values of �. If � = 1, Swish is equivalent to the Sigmoid-weighted Linear Unit (SiL) of Elfwing
et al. (2017) that was proposed for reinforcement learning. If � = 0, Swish becomes the scaled
linear function f(x) = x

2 . As � ! 1, the sigmoid component approaches a 0-1 function, so
Swish becomes like the ReLU function. This suggests that Swish can be loosely viewed as a smooth
function which nonlinearly interpolates between the linear function and the ReLU function. The
degree of interpolation can be controlled by the model if � is set as a trainable parameter.

Figure 4: The Swish activation function. Figure 5: First derivatives of Swish.

Like ReLU, Swish is unbounded above and bounded below. Unlike ReLU, Swish is smooth and non-
monotonic. In fact, the non-monotonicity property of Swish distinguishes itself from most common
activation functions. The derivative of Swish is

f 0(x) = �(�x) + �x · �(�x)(1� �(�x))

= �(�x) + �x · �(�x)� �x · �(�x)2

= �x · �(x) + �(�x)(1� �x · �(�x))
= �f(x) + �(�x)(1� �f(x))

The first derivative of Swish is shown in Figure 5 for different values of �. The scale of � controls
how fast the first derivative asymptotes to 0 and 1. When � = 1, the derivative has magnitude less
than 1 for inputs that are less than around 1.25. Thus, the success of Swish with � = 1 implies that
the gradient preserving property of ReLU (i.e., having a derivative of 1 when x > 0) may no longer
be a distinct advantage in modern architectures.

The most striking difference between Swish and ReLU is the non-monotonic “bump” of Swish when
x < 0. As shown in Figure 6, a large percentage of preactivations fall inside the domain of the bump
(�5  x  0), which indicates that the non-monotonic bump is an important aspect of Swish. The
shape of the bump can be controlled by changing the � parameter. While fixing � = 1 is effective
in practice, the experiments section shows that training � can further improve performance on some
models. Figure 7 plots distribution of trained � values from a Mobile NASNet-A model (Zoph et al.,
2017). The trained � values are spread out between 0 and 1.5 and have a peak at � ⇡ 1, suggesting
that the model takes advantage of the additional flexibility of trainable � parameters.
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Figure 9: Total energy response of the calorimeter to photons with an energy of approximately 65 GeV in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (solid red line) and a GAN (solid blue line). The shown error bars and the
hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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Figure 10: Energy response of the calorimeter as function of the true photon energy for particles in the range
0.20 < |⌘ | < 0.25. The calorimeter response for the full detector simulation (black markers) is shown as reference
and compared to the ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the
resolution of the simulated energy deposits.
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hatched bands indicate the statistical uncertainty of the reference data and the synthesized samples, respectively.
The underflow and overflow is included in the first and last bin of each distribution, respectively.
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