

SEMI SUPERVISED LEARNING FOR PARTICLE IDENTIFICATION IN PICO-60

Gevy Cao on behalf of Brendon Matusch For the PICO Collaboration ACAT 2019 Saas Fee, Switzerland March 14, 2019

DARK MATTER EVIDENCE

- o Baryon Acoustic Oscillation in the early universe
 - Universe expands smoothly but not perfectly. Dark matter in over-dense regions collapse gravitationally.
 Radiation pressure repels the collapse.
 - Damping in the power spectrum -> high photon
 diffusion -> indicate high density of dark matter
 - Model fitting verifies the hypothetical density of dark matter

DARK MATTER DETECTION

- Direct Detection of Dark Matter:
 - Gaseous detectors
 - > TPC (directional sensitivity)
 - Solid crystal detectors
 - > Cryogenic
 - Liquid detectors
 - > Superheat

- Superheated bubble chamber technology
 - O Slowly heat up the target liquid (C_3F_8) above its boiling point while applying pressure.
 - Slowly lower the pressure to reach superheat -> metastable state.
 - Energy deposition in the form of nuclear recoil in the detector causes the state of fluid to jump over the Gibbs thermodynamic potential -> nucleation of a bubble.

BACKGROUND

- Cosmic muons/neutrons
 - Shielded by 2km of rock
 - More neutron shielding provided by 1.5m of water
- Gamma radiation
 - Excellent gamma rejection (10⁻¹²)
 - New electron recoil model in progress
 - Scintillating bubble chamber
- o Alpha recoils
 - Acoustic discrimination

CURRENT P.I.D IN PICC

- Amplitude of the acoustic wave is measured for each bubble in time domain
- Fourier transform -> filter -> Acoustic
 Parameter (AP) calculated in most
 distinguishable frequency bands.
- \circ Nuclear recoil events normalized to AP = 1.
- \circ Cut set to 2 σ from mean.
- o **Problem**: technique tuning required for a new detector and after large calibration data sets; mid-AP events
- o Can machine learning help?

MACHINE LEARNING IN PICC

- o Goal: Discriminate alpha recoils from nuclear recoils
- Performance assessed against AP
- o Input choices: raw waveform, integrated FFT, full FFT, images, position corrected FFT.

Configuration	Max Accuracy	Precision	Recall	CWSD
$DeepConv(\omega)$	95%	97%	97%	0.52
$\mid FourierMLP(PosCor(\beta_8))$	96%	98%	97%	0.42
$FourierMLP(\beta_8)$	98%	100%	98%	0.29
$FourierMLP(\beta_{50,001})$	95%	95%	98%	0.46
$ImageConv(\iota)$	68%	68%	100%	0.97

NETWORK STRUCTURE

- Input: 8 position-corrected, banded fourier power for each of the two working piezos
- Cost function: simple mse
- Work is done in python using tensorflow

SEMI-SUPERVISED LEARNING

Gravitational Differentiation

- Set aside some labeled (GT 0 or 1) training data
- All unlabeled training data have a ground truth value of 0.5
- As training proceeds, the ground truth value is updated such that:

$$GT = p + GravDiff$$

$$GravDiff = g * sgn(p) * abs(tanh(2(p - 0.5)))^{\varphi}$$

 Produces large gradients for predictions close to 0 or 1, and flattens out low-confidence predictions.

$$\frac{dE}{dw_i} = \sum_{i=0}^{m} (GT_i - p_i) * f(x_i)$$

SEMI-SUPERVISED LEARNING

Iterative Clustering

- o Train a set of labeled data for N epochs
- o Produce predictions on unlabeled data
- o If the prediction is within a distance σ from 0 or 1, add the data sample to labeled training data

PERFORMANCE ASSESSMENT

Nuclear recoil dataset N, Alpha recoil dataset A, the class-wise standard deviation (CWSD) is defined as:

$$S = std([N, A])$$

$$CWSD = \frac{std\left(\frac{N}{S}\right) + std\left(\frac{A}{S}\right)}{2}$$

CONCLUSION AND OUTLOOK

- ML can not only reproduce AP results, but can also provide a
 quick intermediate check on particle identification without the
 need to renormalize AP for each calibration set.
- o PICO-40L will be operating in the next month or two
 - Preliminary P.I.D using ML to complement AP
 - o Can be applied to a small set of calibration data
- Machine learning may help us refine acoustic cuts with a more definite classification of mid-AP events.

FROM THE AUTHOR

The author of this work, Brendon Matusch, welcomes any further discussions or opportunities.

He can be reached at: <u>brendon-m@outlook.com</u>

More of his work can be found at: https://github.com/bfmat

