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DARK MATTER DETECTION

Direct detection
X

X
Production Indirect
at colliders detection
P P

o Direct Detection of Dark Matter:
o Gaseous detectors
» TPC (directional sensitivity)
o Solid crystal detectors

» Cryogenic

o€Liquid detectors

» Superheat
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PICO EXPERIMENT

o Superheated bubble chamber technology

o Slowly heat up the target liquid (C;Fg) above its boiling point while

— Bellows
)

applying pressure.

Acoustic Sensors

Water (Buffer) (pi )
ezos

o Slowly lower the pressure to reach superheat -> metastable state.
o Energy deposition in the form of nuclear recoil in the detector C3F8 (Target]

4 Cameras

causes the state of fluid to jump over the Gibbs thermodynamic

Propylene Glycol
(hydraulic fluid)
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potential -> nucleation of a bubble.
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BACKGROUND

o Cosmic muons/neutrons
o Shielded by 2km of rock
o More neutron shielding provided by 1.5m
of water
o Gamma radiation
o Excellent gamma rejection (10-12)
o New electron recoil model in progress
o Scintillating bubble chamber
o Alpha recoils
o Acoustic discrimination




voltage

0.1

0.05

-0.15

PICO

A typical acoustic waveform

CURRENT P.I.LD IN PICO

sample

o Amplitude of the acoustic wave is
measured for each bubble in time domain 60

o Fourier transform -> filter -> Acoustic
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Parameter (AP) calculated in most
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distinguishable frequency bands.

counts

o Nuclear recoil events normalized to AP = 1.

o Cutsetto 2 o from mean.

o Problem: technique tuning required for a
new detector and after large calibration data
sets; mid-AP events

o Can machine learning help?
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MACHINE LEARNING IN PICQ

average banded FFT

107

o Goal: Discriminate alpha recoils from nuclear recoils

o Performance assessed against AP
o Input choices: raw waveform, integrated FFT, full FFT,

images, position corrected FFT.

Configuration Max Accuracy | Precision | Recall | CWSD
DeepConv(w) 95% 97% 97% 0.52 |
ourier osCor( g 967 987 977 0.42 :
~FourierMLP(Gg) 8% T00% 98% | 0.29 | :
FourierMLP(Bs0.001) 95% 95% 98% | 0.46 PR, SRR MR SN 0
ImageConuv(r) 68% 68% 100% | 0.97 1o* T ey 1o°
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NETWORK STRUCTURE

o Input: 8 position-corrected, banded fourier power for
each of the two working piezos
o Cost function: simple mse

o Work is done in python using tensorflow

‘W

Fully connected
Size: 12

Dropout prob: 0.25

Fully connected
Size: 8

Dropout prob: 0.25

Binary output




SEMI-SUPERVISED LEARNING

Gravitational Differentiation

o Set aside some labeled (GT 0 or 1) training data

o All unlabeled training data have a ground truth value of 0.5

o As training proceeds, the ground truth value is updated such that:
GT =p + GravDiff

GravDif f = g = sgn(p) * abs(tanh(2(p — 0.5)))(p
o Produces large gradients for predictions close to 0 or 1, and
flattens out low-confidence predictions.

d m
E_ = Z(GTi —pi) * f(x;)
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SEMI-SUPERVISED LEARNING
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PERFORMANCE ASSESSMENT
accuracy CWSD

Nuclear recoil dataset N, Alpha
recoil dataset A, the class-wise
standard deviation (CWSD) is
defined as:

S = std([N, A])

std (3) + std (5)

CWSD =
2

Previous NN
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CONCLUSION AND OUTLOOK

o ML can not only reproduce AP results, but can also provide a
quick intermediate check on particle identification without the
need to renormalize AP for each calibration set.

o PICO-40L will be operating in the next month or two

o Preliminary P.I.D using ML to complement AP
o Can be applied to a small set of calibration data
o Machine learning may help us refine acoustic cuts with a more

definite classification of mid-AP events.

Results published on ArXiv 1811.11308 WM




FROM THE AUTHOR

The author of this work, Brendon Matusch, welcomes any further
discussions or opportunities.

He can be reached at: brendon-m@outlook.com

More of his work can be found at: https://github.com/bfmat
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