Generalization of Homogeneity Tests Used in HEP Experiments

Jakub Trusina, Jiří Franc, and Adam Novotný
Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University in Prague
jakub.trusina@fjfi.cvut.cz

	- To develop homogeneity (two sample) tests which can be applied to weighted unbinned data samples in ROOT
Goals:	
- To verify that suggested generalized tests statistics have their presumed distribution	
- To compare power of tests for χ^{2} test, Kolmogorov-Smirnov test, Anderson-Darling test, and Cramér-von Mises test	

I. Introduction

Homogeneity tests currently available in ROOT - TH1::Chi2Test

- it allows testing weighted data
-it is unreliable when sample sizes are significantly different - it can be applied only to binned data; however, various binning can lead to different test's conclusion
- TH1::KolmogorovTest is a modification of the KolmogorovSmirnov (KS) test that can be applied to binned weighted data; however, returned p-value is higher than the true one
- TH1::AndersonDarlingTest is a modification of the AndersonDarling (AD) test, it can be applied to binned unweighted data only
- TMath::KolmogorovTest is the classical KS test which can be applied only to unweighted and unbinned data
- ROOT::Math::GoFTest
- this class contains implementations of KS and AD test
- both tests are applicable to unweighted and unbinned samples

AD test can be applied also to binned data
Problems with binned data

An example of various binning of the same sample and its effect. Samples were produced from $\mathrm{N}(0,1)$ and $\mathrm{N}(0.1,1)$

- Two different binning configuration
nbins $=10, \min =-2.5, \max =2.5$, pval $=0.0387$
nbins $=11, \min =-2.45, \max =2.55$, pval $=0.0972$
- Different results
χ^{2} test (or any other test of binned data) can lead to differ ent decision if user adjusts the binning configuration higher number of bins usually leads to higher p-value

Advantages of tests bas

 on EDFwhile histogram loses information of sample's distribution within each bin, EDF keeps complete information
every difference inside bin can be counted (such as Cramérvon Mises (CvM) or AD test) binned KS test does not find he true maximum distance between EDFs but maximum dis tance between cumulative histograms which is most likely lower

II. Generalized homogeneity tests

We suggest modifications of KS, CvM and AD homogeneity tests statistics. Let $(\boldsymbol{X}, \boldsymbol{W})=$ $\left(\left(X_{1}, \ldots, X_{n}\right)^{\prime},\left(W_{1}, \ldots, W_{n}\right)^{\prime}\right)$ be first sample with its weights and $(\boldsymbol{Y}, \boldsymbol{V})=\left(\left(Y_{1}, \ldots, Y_{m}\right)^{\prime},\left(V_{1}, \ldots, V_{m}\right)^{\prime}\right)$ the second one. Let $W \boldsymbol{\bullet}=\sum_{i=1}^{n} W_{i}$ and $K_{1}(\cdot)$ be Bessel function of the third kind.

- Fundamental definitions
- Kolmogorov-Smirnov test

Test statistic	$T_{n, m}^{\boldsymbol{W}, \boldsymbol{V}}=\sqrt{\frac{n_{e} m_{e}}{n_{e}+m_{e}}} \sup _{x \in \mathbb{R}}\left\|F_{n}^{\boldsymbol{W}}(x)-F_{m}^{\boldsymbol{V}}(x)\right\|$
Presumed asymptotic distribution	$K(\lambda)=1-2 \sum_{k=1}^{+\infty}(-1)^{k+1} e^{-2 k^{2} \lambda^{2}}$

- Cramér-von Mises test

Test statistic $\quad T_{n, m}^{\boldsymbol{W}, \boldsymbol{V}}=\frac{n_{e} m_{e}}{n_{e}+m_{e}} \int_{\mathbb{R}}\left(F_{n}^{\boldsymbol{W}}(x)-F_{m}^{\boldsymbol{V}}(x)\right)^{2} d H_{n_{e}, m_{e}}^{\boldsymbol{W}, \boldsymbol{V}}$
Presumed as. dist. $L_{\mathrm{CvM}}(z)=\frac{1}{\pi \sqrt{z}} \sum_{k=1}^{+\infty}(-1)^{k}\binom{-\frac{1}{2}}{k} \sqrt{1+4 k} \exp \left(-\frac{(1+4 k)^{2}}{16 z}\right) K_{\frac{1}{4}}\left(\frac{(1+4 k)^{2}}{16 z}\right)$

- Anderson-Darling test

Test statistic	$T_{n, m}^{\boldsymbol{W}, \boldsymbol{V}}=\frac{n_{e} m_{e}}{n_{e}+m_{e}} \int_{0<H_{n_{e}, \boldsymbol{T}_{e}}^{W}(x)<1} \frac{\left(F_{n}^{\boldsymbol{W}}(x)-F_{m}^{\boldsymbol{V}}(x)\right)^{2}}{H_{n_{e}, m_{e}}^{W}(x)\left(1-H_{n_{e}, m_{e}}^{W, \boldsymbol{V}}(x)\right)} d H_{n_{e}, m_{e}}^{\boldsymbol{W}, \boldsymbol{V}}$
Presumed asympt. distribution	$\begin{aligned} L_{\mathrm{AD}}(z)=\frac{\sqrt{2 \pi}}{z} \sum_{k=1}^{+\infty}(-1)^{k}\binom{-\frac{1}{2}}{k^{2}}(1+4 k) & \exp \left(-\frac{(1+4 k)^{2} \pi^{2}}{8 z}\right) \\ & \int_{0}^{+\infty} \exp \left(\frac{z}{8\left(w^{2}+1\right)}-\frac{(1+4 k)^{2} \pi^{2} w^{2}}{8 z}\right) d w \end{aligned}$

III. Numerical verification of presumed distributions

Since no theoretical proof of asymptotic properties was yet done, we can demonstrate them numerically. If we consider data as random variables, distribution of test statistic is a continuous function, and the null hypothesis is true then

$$
\mathrm{p} \text {-value } \doteq 1-F_{T}\left(T_{n, m}^{\boldsymbol{W}, \boldsymbol{V}}\right) \sim U(0,1)
$$

We carried out an experiment in which we produced two samples from different distributions and assigned them weights in such a way that their WEDFs converge to the same distribution. Afterward, we applied homogeneity tests.

Experiment's description
We repeated the whole procedure 10000 times. Then we plotted EDF of each test's p-values and compared it to CDF of $\mathrm{U}(0,1)$.

- First sample	- Second sample
	- distribution: $X \sim \mathrm{~N}(0,1)$
	- distribution: $Y \sim \mathrm{~N}\left(0.5,1.5^{2}\right)$
- sample size: $m=100000$	
- weights: $W_{i}=1$	

Results

- Even though p-values are correct in this experiment, we can show an counterexample. Let now $X, Y \sim \mathrm{~N}(0,1)$ and $W_{i}, V_{i} \sim \operatorname{Gamma}(k, \theta)$.
- The ratios of rejection (on significance level 0.05) for this another experiment differs significantly for various combinations of k and θ.

From the figures above, we can see that all four tests have their p-values distributed ind idered p-valuermly if the null hypothesis is true. In this case, we consider the null hypothesis not as $F_{X}=F_{Y}$ but as $F_{n}^{\boldsymbol{W}}(x) \rightarrow F(x)$ a.s. and $F_{m}^{\boldsymbol{V}}(x) \rightarrow F(x)$ a.s. for every $x \in \mathbb{R}$. We also verified p-values distribution in case of $F_{X}=F_{Y}$ and both samples have weights produced independently from some random nonnegative distribution (as in the counterexample).

IV. Power of test comparison

Power of test differs for various experiments' setting. We carried out another experiment in which we observed the effect of six parameters on the power of test.

Experiment's description

We produced two samples from $\mathrm{N}(0,1)$ and $\mathrm{N}\left(\mu_{s},\left(1+\sigma_{s}\right)^{2}\right)$. All weights of the first sample are equal to 1 while weights of the second sample were independently generated from $\operatorname{Gamma}(k, \theta)$. Parameters k and θ will be represented by mean $\left(\mu_{w}\right)$ and variance $\left(\sigma_{w}\right)$ of weights. The first sample's size is equal to n while the other sample's is equal to $k \cdot n$. For every setting of $\left(\mu_{s}, \sigma_{s}, \mu_{w}, \mu_{w}, \sigma_{w}, n, k\right)$ we repeated procedure 1000 times and calculated ratio of rejected tests (r) on significance level $\alpha=0.05$ which is power of test's estimate.

Figure 1: Parameter setting: $\left(\mu_{w}, \sigma_{w}, n, k\right)=(0.3,0.1,200,10)$. AD test has the highest ratio of rejected tests for both changing parameter μ_{s} and σ_{s}. This is also true for $\mu_{s}=0.3,0.4,0.5$.

Figure 2: Parameter setting: $\left(\mu_{s}, \sigma_{s}, n, k\right)=(0.1,0.1,500,20)$. AD test has the highest r for both changing parameter μ_{w} and σ_{w}. However, it is interesting discovery that rising σ_{w} lowers power of test. χ^{2} test is unstable for small number of events (when $\mu_{w}=0.01$).

Figure 3: Parameter setting: $\left(\mu_{s}, \sigma_{s}, \mu_{w}, \sigma_{w}\right)=(0.1,0.2,0.4,0.01)$. AD test has again the highest ratio of rejected tests for both changing parameter k and n.

Acknowledgment We acknowledge support from the Czech CTU grant SGS18/188/OHK4/3T/14 and MEYS grants LM2015068 and LTT18001.

