
What is MATHUSLA?

Long-Lived Particles (LLPs) 
provide a gateway to a Hidden 
or Dark Sector in many models. 
This Hidden Sector could hold 
answers to many of today’s 
most pressing physics questions, 
in particular Dark Matter and 
the Hierarchy Problem.

An Ultra-Long-Lived-Particle (ULLP) 
produced at the LHC interaction point…

… Decays on the surface in MATHUSLA, 
a 5 or 6 layer tracking chamber with 
veto scintillator around the edges

ATLAS and CMS and LHCb are sensitive to short lifetime long lived particles – we 
need the long baseline and low background environment of a surface detector to 
be sensitive to the ULLPs.

Main backgrounds are Cosmic Rays and upward going Muons from the LHC 
interaction point (produced via W/Z, 𝑡 ҧ𝑡, 𝑏ത𝑏, etc.).
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The MATHUSLA Test Stand
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A 6 × 3 m test stand was built and run at the ATLAS IP 
from 2017-2018. It had 3 double layers of Resistive 
Plate Chambers (RPC’s) for track reconstruction from 
the ARGO experiment, and a top and bottom layer 
made up of the DZERO experiment’s forward muon 
scintillator paddles.

Its goals:
• Can we reconstruct tracks from Cosmic Rays
• Can we reconstruct upward going tracks?
• Can we tell the difference between them?

Status:
• We have millions of tracks
• GEANT4 based simulation of the test stand
• First pass at calibrations for timing finished
• Now working on acceptance calculations to 

determine expected upward going rate
• Geometry measured by hand.

In general this is a much nicer way to write out a minimization routine that using 
C++ or RooFit.
• Python is a very productive language for this sort of development.
• TensorFlow and numpy make it easy to write code that is more efficient than I 

could probably write in C++ at the same effort level.
• Visualization from matplotlib and Jupyter Lab/Notebook made debugging using 

visualizations simple. The Python debugger made debugging the code easy too.

There are definitely pain points:
• Difficult to think about 1000’s of tracks at once, rather than a single track at a 

time. 
• HEP is event oriented. Computers love vectors.

• TensorFlow builds a DAG for its compute graph. Debugging a DAG is quite difficult. 
• There are times it makes sense to use numpy arrays and TensorFlow tensors 

interchangeably, in particular for unit testing. However, the two are not 
interchangeable in the code.

What is Next?
• Clean up the tracks used for alignment
• Straight line fits mean we can use a simple matrix inversion to find the track 

intercepts and slopes. This should speed things up further.
• Use a large GPU machine (thank you UW Astronomy) to see how the fit time 

changes and to include more tracks in the fit.
• Compare with more standard HEP packages

Conclusions and What Is Next

def chi2_contrib_per_hit (strip_location, strip_rz, strip_widths, x0, m, hits_used):
strip_cos_y = np.sin(strip_rz) if type(strip_rz) is np.ndarray else tf.sin(strip_rz)
strip_cos_x = np.cos(strip_rz) if type(strip_rz) is np.ndarray else tf.cos(strip_rz)

Lx = strip_cos_x
Ly = strip_cos_y
Wx = -strip_cos_y
Wy = strip_cos_x

del_L = strip_widths[0] / math.sqrt(12)
del_W = strip_widths[1] / math.sqrt(12)
strip_ratio_Lx = Lx / del_L
strip_ratio_Ly = Ly / del_L
strip_ratio_Wx = Wx / del_W
strip_ratio_Wy = Wy / del_W

ratio_Lx = expand_to_tracks(strip_ratio_Lx, len(hits_used))
ratio_Ly = expand_to_tracks(strip_ratio_Ly, len(hits_used))
ratio_Wx = expand_to_tracks(strip_ratio_Wx, len(hits_used))
ratio_Wy = expand_to_tracks(strip_ratio_Wy, len(hits_used))

delta_x = calc_delta (strip_location[:,0], strip_location[:,2], x0[0], m[0], hits_used)
delta_y = calc_delta (strip_location[:,1], strip_location[:,2], x0[1], m[1], hits_used)

length_error = delta_x * ratio_Lx + delta_y * ratio_Ly
width_error = delta_x * ratio_Wx + delta_y * ratio_Wy

return length_error**2 + width_error**2

Tensor Flow Alignment Code

This code calculates the chi2 contribution from each hit. It does this for all 10,000 tracks (each with 6 hits) at once.

The alignment code is less than 500 lines of code (with comments). Support for geometry 
constants, reading in files, etc., is another 500 lines of code.

(𝑥, 𝑦, 𝑧) locations and rotations for all 960 strips.
During minimization these are allowed to float to 
minimize the 𝜒2.

Matrix of 960 hits by 𝑛𝑡𝑟𝑎𝑐𝑘𝑠. In each row only 6 
entries are one as each track can have only 6 hits.

Passing in numpy arrays makes unit tests and 
debugging easier. This code gets around library 
differences.

Operator overloading means that the TensorFlow 
operations happen without having to write 
special code for the user.

Different parts of the code require the 
same data in different format matrices. 
Reshape is used throughout.

The 𝜒2 contribution is returned in a 960 by 
𝑛𝑡𝑟𝑎𝑐𝑘 matrix ready to be summed. This is 
a part of a TensorFlows’ Directed Acyclic 
Graph (DAG) to compute this value.

Sample Results From Running

The TensorFlow fit shown here used 1000 tracks. This is 4048 free parameters in 
the fit. Initial values were given for all the track fit parameters based on the ad-hoc 
geometry to speed convergence.

The Adam optimizer finds its minimum 
after 150,000 iterations. This takes about 
1.5 hours on a 12 year old i7 machine. 
Core memory usage for 1000 tracks is 
about 300 MB (Windows 10 running 
Anaconda3 native).

𝜒2 comparison before 
and after alignment

Error as a function of 
iteration
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Changes in the 
(𝑥, 𝑦) and rotation 
of each of the 12 
RPC chambers. 
Units are cm and 
radians.

Large shifts are 
correlated with 
RPC’s that have 
few hits.

Detector 
Model

Track Fits

𝜒2

• Each is allow to shift in their 
plain 𝑥, 𝑦 , and each is allowed 
to rotate in the 𝑥𝑦 plane.

• RPC #0 is fixed in place

12 RPC’s

• Hit finding is done once
• Track is re-fit each time the 

RPC’s are moved
• Straight line fits in 𝑥 = 𝑥0 +

𝑚𝑥𝑧 and 𝑦 = 𝑦0 +𝑚𝑦𝑧.

2000 Tracks

• The sum of each track’s 𝜒2

• No terms for the ad-hoc 
measurements made on the 
detector.

Minimize the 𝜒2
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