
What is MATHUSLA?

Long-Lived Particles (LLPs)
provide a gateway to a Hidden
or Dark Sector in many models.
This Hidden Sector could hold
answers to many of today’s
most pressing physics questions,
in particular Dark Matter and
the Hierarchy Problem.

An Ultra-Long-Lived-Particle (ULLP)
produced at the LHC interaction point…

… Decays on the surface in MATHUSLA,
a 5 or 6 layer tracking chamber with
veto scintillator around the edges

ATLAS and CMS and LHCb are sensitive to short lifetime long lived particles – we
need the long baseline and low background environment of a surface detector to
be sensitive to the ULLPs.

Main backgrounds are Cosmic Rays and upward going Muons from the LHC
interaction point (produced via W/Z, 𝑡 ҧ𝑡, 𝑏ത𝑏, etc.).

Aligning the MATHUSLA Test Stand Detector: Using TensorFlow
Gordon Watts

The MATHUSLA Test Stand

6
 m

 T
al

l

3 m Wide

A 6 × 3 m test stand was built and run at the ATLAS IP
from 2017-2018. It had 3 double layers of Resistive
Plate Chambers (RPC’s) for track reconstruction from
the ARGO experiment, and a top and bottom layer
made up of the DZERO experiment’s forward muon
scintillator paddles.

Its goals:
• Can we reconstruct tracks from Cosmic Rays
• Can we reconstruct upward going tracks?
• Can we tell the difference between them?

Status:
• We have millions of tracks
• GEANT4 based simulation of the test stand
• First pass at calibrations for timing finished
• Now working on acceptance calculations to

determine expected upward going rate
• Geometry measured by hand.

In general this is a much nicer way to write out a minimization routine that using
C++ or RooFit.
• Python is a very productive language for this sort of development.
• TensorFlow and numpy make it easy to write code that is more efficient than I

could probably write in C++ at the same effort level.
• Visualization from matplotlib and Jupyter Lab/Notebook made debugging using

visualizations simple. The Python debugger made debugging the code easy too.

There are definitely pain points:
• Difficult to think about 1000’s of tracks at once, rather than a single track at a

time.
• HEP is event oriented. Computers love vectors.

• TensorFlow builds a DAG for its compute graph. Debugging a DAG is quite difficult.
• There are times it makes sense to use numpy arrays and TensorFlow tensors

interchangeably, in particular for unit testing. However, the two are not
interchangeable in the code.

What is Next?
• Clean up the tracks used for alignment
• Straight line fits mean we can use a simple matrix inversion to find the track

intercepts and slopes. This should speed things up further.
• Use a large GPU machine (thank you UW Astronomy) to see how the fit time

changes and to include more tracks in the fit.
• Compare with more standard HEP packages

Conclusions and What Is Next

def chi2_contrib_per_hit (strip_location, strip_rz, strip_widths, x0, m, hits_used):
strip_cos_y = np.sin(strip_rz) if type(strip_rz) is np.ndarray else tf.sin(strip_rz)
strip_cos_x = np.cos(strip_rz) if type(strip_rz) is np.ndarray else tf.cos(strip_rz)

Lx = strip_cos_x
Ly = strip_cos_y
Wx = -strip_cos_y
Wy = strip_cos_x

del_L = strip_widths[0] / math.sqrt(12)
del_W = strip_widths[1] / math.sqrt(12)
strip_ratio_Lx = Lx / del_L
strip_ratio_Ly = Ly / del_L
strip_ratio_Wx = Wx / del_W
strip_ratio_Wy = Wy / del_W

ratio_Lx = expand_to_tracks(strip_ratio_Lx, len(hits_used))
ratio_Ly = expand_to_tracks(strip_ratio_Ly, len(hits_used))
ratio_Wx = expand_to_tracks(strip_ratio_Wx, len(hits_used))
ratio_Wy = expand_to_tracks(strip_ratio_Wy, len(hits_used))

delta_x = calc_delta (strip_location[:,0], strip_location[:,2], x0[0], m[0], hits_used)
delta_y = calc_delta (strip_location[:,1], strip_location[:,2], x0[1], m[1], hits_used)

length_error = delta_x * ratio_Lx + delta_y * ratio_Ly
width_error = delta_x * ratio_Wx + delta_y * ratio_Wy

return length_error**2 + width_error**2

Tensor Flow Alignment Code

This code calculates the chi2 contribution from each hit. It does this for all 10,000 tracks (each with 6 hits) at once.

The alignment code is less than 500 lines of code (with comments). Support for geometry
constants, reading in files, etc., is another 500 lines of code.

(𝑥, 𝑦, 𝑧) locations and rotations for all 960 strips.
During minimization these are allowed to float to
minimize the 𝜒2.

Matrix of 960 hits by 𝑛𝑡𝑟𝑎𝑐𝑘𝑠. In each row only 6
entries are one as each track can have only 6 hits.

Passing in numpy arrays makes unit tests and
debugging easier. This code gets around library
differences.

Operator overloading means that the TensorFlow
operations happen without having to write
special code for the user.

Different parts of the code require the
same data in different format matrices.
Reshape is used throughout.

The 𝜒2 contribution is returned in a 960 by
𝑛𝑡𝑟𝑎𝑐𝑘 matrix ready to be summed. This is
a part of a TensorFlows’ Directed Acyclic
Graph (DAG) to compute this value.

Sample Results From Running

The TensorFlow fit shown here used 1000 tracks. This is 4048 free parameters in
the fit. Initial values were given for all the track fit parameters based on the ad-hoc
geometry to speed convergence.

The Adam optimizer finds its minimum
after 150,000 iterations. This takes about
1.5 hours on a 12 year old i7 machine.
Core memory usage for 1000 tracks is
about 300 MB (Windows 10 running
Anaconda3 native).

𝜒2 comparison before
and after alignment

Error as a function of
iteration

G
o

o
d

 track 𝜒
2
cu
t

Changes in the
(𝑥, 𝑦) and rotation
of each of the 12
RPC chambers.
Units are cm and
radians.

Large shifts are
correlated with
RPC’s that have
few hits.

Detector
Model

Track Fits

𝜒2

• Each is allow to shift in their
plain 𝑥, 𝑦 , and each is allowed
to rotate in the 𝑥𝑦 plane.

• RPC #0 is fixed in place

12 RPC’s

• Hit finding is done once
• Track is re-fit each time the

RPC’s are moved
• Straight line fits in 𝑥 = 𝑥0 +

𝑚𝑥𝑧 and 𝑦 = 𝑦0 +𝑚𝑦𝑧.

2000 Tracks

• The sum of each track’s 𝜒2

• No terms for the ad-hoc
measurements made on the
detector.

Minimize the 𝜒2

Aligning the
MATHUSLA Test Stand
using TensorFlow

#470-39

