

Identifying hadronically decaying vector bosons and top quarks in ATLAS

Oliver Majerský¹ on behalf of the ATLAS collaboration ¹Comenius University in Bratislava

ACAT 2019, Saas-Fee

Introduction

- Many measurements of the Standard Model and searches for new physics signatures involve studying top quarks and vector bosons in hadronic final states
- Quarks from the top & boson hadronic decays form showers of particles jets
- ► Jets from decay more collimated at high energy angular separation $\propto \frac{2M}{p_T}$
- Reconstruct jets with large radius (R) to capture decay products

Signal efficiency measurement

- Using boosted tt events with single lepton in final state
- **Tag-and-probe approach**; very pure $t\bar{t}$ sample using leptonic top signature selection, probe the hadronically-decaying top
- **Top** jet (*W* jet) selection require small-*R b*-jet **inside** (**outside**) large-*R* jet cone
- Signal efficiency definition in MC and data:

- **Boosted tagging** use of large-*R* jet substructure to discriminate tops, *W*'s, etc. from multijet background – light-quark/gluon jets
- Energy patterns in the jet, multi-prong structure
- Top(W) jets: 3(2) prongs
- Light-quark/gluon jets: 1 prong with (typically) soft, wide-angle emissions
- Tagging algorithms optimization using Monte Carlo (MC) simulation. Check that MC describes data:
 - **Data/MC comparisons** of jet substructure observables in signal and background topologies
 - Data/MC measurement of signal efficiency and background rejection

Signal/background jet mass spectra [2]

Tagging algorithms investigated

- "Simple" taggers selection on two substructure observables (high-level features)
- Likelihood-based approach Shower Deconstruction (matrix element method) probability of signal or background scenario based on a simplified showering model
- **Shape-based boosted decision tree & deep neural network** extending approach of "simple" taggers, using multiple high-level features and their correlations
- **Topocluster-based deep neural network** using fixed number of low-level features; momentum vectors of 10 highest- p_T jet constituent clusters

Boosted decision tree (BDT)

- Gradient boosting technique with bagging
- 500 trees in forest used, depth < 20
- 10(11) inputs for top(W) tagging
- Using TMVA

Deep neural network (DNN)

- Fully-connected feed-forward network, up to 5 hidden layers, up to 18 nodes in layer
- Adam optimizer, rectified linear unit activation function
- 13(12) inputs for top(W) tagging
- ► Using *Keras* with *Theano* as backend

Training sample of jets flat in p_T for both ML techniques

Topocluster-based deep neural network (TopoDNN)

- (p_T, η, ϕ) of 10 leading- p_T clusters, reduced dimensionality by rotating and flipping cluster vectors (rotational symmetry of the jet constituents)
- 4 hidden layers with up to 300 nodes
- Training sample jet p_T distribution signal-like (sub-sampling for light-quark/gluon jets)

Performance in MC simulation

TopoDNN classifier data/MC – dijet events

— Data 2015+2016

— Pythia8

Herwig++

Stat. uncert

Total uncert

DNN W classifier data/MC – γ +jet events

Top tagging

W tagging

- Machine learning (ML)-based algorithms outperform other investigated taggers
- TopoDNN at high p_T outperforms ML taggers using high-level features
- Larger performance gains by ML algorithms for top jets more distinct decay structure

Referencess

[1] Jesse Thaler and Ken Van Tilburg. Identifying boosted objects with N-subjettiness. *JHEP*, 03:015, 2011.

ATLAS Collaboration. Performance of Top Quark and W Boson Tagging in Run 2 with ATLAS. (ATLAS-CONF-2017-064), 2017.

ATLAS Collaboration. Performance of top-quark and W-boson tagging with ATLAS in Run 2 of the LHC. 2018. arXiv: 1808.07858.

TopoDNN bckg. rejection – dijet events

DNN W bckg. rejection – γ +jet events

Conclusions

 ϵ_{bkg}

rejectio

ound.

ckgr

25

20

ATLAS

30 - Multijet selection

 $35 \vdash \sqrt{s} = 13 \text{ TeV}, 36.7 \text{ fb}^{-1}$

Trimmed anti- k_{t} R=1.0 jets

Top tagger (ϵ_{sig} = 80%): TopoDNN

- First measurement of signal efficiency and background rejection for ML-based top/Wtagging using Run-II data
- Signal efficiency measurements dominated by $t\bar{t}$ modelling uncertainties
- First top/W tagging background rejection measurement in γ +jet topology
 - Allows measurement of rejection rates at much lower leading jet p_T compared to dijet events
- Probing different light-quark/gluon jet sample composition
- Some tension in dijet modelling by HERWIG++ and γ +jet by PYTHIA8