

Evaluating InfluxDB and ClickHouse database
technologies for improvements of the ATLAS

operational monitoring data archiving

Matei-Eugen Vasile1, Giuseppe Avolio2, Igor Soloviev3

1 IFIN-HH, 2 CERN, 3 University of California, Irvine

Status and Outlook

Introduction
The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment
the Large Hadron Collider (LHC) at CERN currently is composed of a large
number of distributed hardware and software components (about 3000
machines and more than 25000 applications) which, in a coordinated
manner, provide the data-taking functionality of the overall system.

During data taking runs, a huge flow of operational data is produced in
order to constantly monitor the system and allow proper detection of
anomalies or misbehaviors. The Persistent Back-End for the ATLAS
Information System of TDAQ (P-BEAST)1 is a system based on a custom-
built time-series database and it is used to archive and retrieve for
applications any operational monitoring data. P-BEAST stores about 18
TB of highly compacted and compressed raw monitoring data per year
acquired at 200 kHz average information update rate during ATLAS data
taking periods.

Since P-BEAST has been put into production, 4 years ago, several
promising database technologies for fast access to time-series
and column-oriented data have become available. InfluxDB2 and
ClickHouse3 were the most promising candidates for improving
the performance and functionality of the current
implementation of P-BEAST.

A series of synthetic tests have been ran on both database
systems which try to leverage the best possible options for
storage of the P-BEAST data using their respective data model
capabilities.

These performance tests have been performed using a subset of
archived ATLAS operational monitoring data.

Why

How (strategy)

What

P-BEAST can store integers,
floats, strings and arrays and
structures of the above. It also
has support for schema
evolution/modifications.

InfluxDB:
- Time-series database
- Support for storing integers,
floats, strings and no control
over signedness and word size
- Schema-less
- High write speed (reportedly)

ClickHouse:
- Columnar database
- Support for storing integers,
floats, strings, arrays and
control over signedness and
word size
- High write speed (reportedly)

Alternatives
Tested data models
InfluxDB #1 InfluxDB #2 ClickHouse #1 ClickHouse #2

● Single table
(measurement in InfluxDB
terminology)

● Timestamp and a tag
(InfluxDB indexed column)
containing the object
name make up the
primary key

● Multiple tables (measurements
in InfluxDB terminology)

● Timestamp is the primary key
in each table

● Each table contains data from
a single object

● The object name is stored as
part of the table name

● Single table
● Columns containing the

timestamp and the object
name make up the primary
key

● The object name column is
used to create partitions
(ClickHouse concept)

● Multiple tables
● Column containing the

timestamp is the primary key
in each table

● Each table contains data from
a single object

● The object name is stored as
part of the table name

How (implementation)
Software

● The 4 tested data models have each been implemented as a separate test that was
run on 6 types of ATLAS operational monitoring data (see below);

● All the tests have been implemented in the Go! Programming Language;
● InfluxDB is itself written in Go!, so it comes with a Go! client library from the

developer;
● ClickHouse has multiple third-party Go! libraries.

Hardware
● All the tests have been run on a dual-CPU machine with:

● 2 Intel Xeon E5-2630 v2 @ 2.60GHz CPUs (each with 6 cores and
Hypethreading, for a total of 24 threads) and

● 32 GB of RAM and
● An 18 TB RAID0 array using hard disk drives

● In the best case scenario, ClickHouse’s insert rate is faster than that of InfluxDB (all tests except the one
for Single integer indicate this);

● What happened with the Single integer test? The number of objects for that attribute was very large (over
45k) and ClickHouse’s partitions feature is recommend only for up to 1k partitions, otherwise the read
speed decreases significantly. It seems that the insert speed is negatively impacted as well;

● The single table approach almost always provide a better result;
● Future work: What happens when it comes to read speed? Or storage performance? How about those

server startup times issues that were noticed? We will investigate and get back to you!

References
[1] P-BEAST - Avolio G, d'Ascanio M, Lehmann-Miotto G, Soloviev I,
"A web-based solution to visualize operational monitoring data in
the Trigger and Data Acquisition system of the ATLAS experiment at
the LHC" in J. Phys.: Conf. Ser. 898 (2017) 032010
https://iopscience.iop.org/article/10.1088/1742-6596/898/3/032010
[2] InfluxDB - https://www.influxdata.com/time-series-platform/
[3] ClickHouse - https://clickhouse.yandex/

Single integer Single float Array of 12 floats Array of 3.5K floats Single string Large single string (~5.5KB)
100

1000

10000

100000

1000000

Insertion Rates InfluxDB #1
InfluxDB #2
ClickHouse #1
ClickHouse #2

Test (Data Type)

D
a
t
a

 p
o

in
t
s

/
se

c
o

n
d

attribute
timestamp object data
...

...
...

attribute.object
timestamp data
...

...

attribute.object
timestamp data
...

...

attribute.object
timestamp data
...

...

attribute
timestamp object data
...

...
...

attribute.object
timestamp data
...

...

attribute.object
timestamp data
...

...

attribute.object
timestamp data
...

...

● InfluxDB: Arrays are stored using one column (field in InfluxDB
terminology) for each element of the array

● ClickHouse: Arrays are stored in a single column, by using
ClickHouse’s support for arrays

● For versioning purposes, the data types are stored as part of the column name for all tested data models

	Slide 1

