
Rafał Bielski, CERN
background image: ATLAS TDAQ racks, cds.cern.ch/record/1696907
on behalf of the ATLAS Collaboration

ATLAS High Level Trigger within the
multi-threaded software framework AthenaMT
19th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, 11–15 March 2019, Saas-Fee

1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

4−10

3−10

2−10

1−10

1

10

210

310

410

510

610

710

M
e
m

o
ry

 p
ri
ce

 [
U

S
D

/M
B

]

Data collected by J. C. McCallum, jcmit.net

1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

1

10

210

310

410

510

Frequency [MHz]

Number of logical cores

Data collected by Karl Rupp,
github.com/karlrupp/microprocessor-trend-data

HLTMPPU athena
DataSource

(in HLTMPPU)

getNext()

collect()

eventDone()

Level-1 result data

doProcessLoop()

hltinterface::HLTInterface

hltinterface::DataCollector

HLTMP::DataSource
hltinterface::HLTInterface

Serialised HLT result

Event fragments

DCMSession

dfinterface::Session

DCMEvent

dfinterface::Event

reject()
accept()

collect()

Event fragments

getL1Result()

Level-1 result data

getNext()

dfinterface::Event

st
a

rt
 n

e
w

 e
ve

n
t

p
ro

ce
ss

e
ve

n
ts

fin
is

h
a

n
 e

ve
n

t

doEventLoop()

while (processEvents){

multithreaded
event processing

}
Serialised HLT result

sequential calls
when free slots available

sequential calls in
different order from getNext

concurrent calls for the
same or different events

AthenaMT ATLAS TDAQ System
Motivation

Implementation

High-Level Trigger in AthenaMT

Data flow

HLT Processing Unit applications

Operating AthenaMT within TDAQ

Athena is the ATLAS software framework used in trigger, 
reconstruction, simulation and analysis

Based on Gaudi – core framework shared with LHCb
Designed in early 2000s without multi-threading in mind

e computing market transitioned towards many-core CPUs 
while memory price plateaued → less memory/core

Already in Run 2 ATLAS struggled to use the processing 
resources (WLCG, Tier0) efficiently with Athena

A stopgap solution was to use forking to reduce memory per 
process (thanks to copy-on-write)

Ultimate solution → redesign the core framework for native, 
efficient and user-friendly multi-threading support → AthenaMT

Based on GaudiHive which uses Intel TBB

Defines algorithm execution order based on 
data dependencies declared as ReadHandles 
and WriteHandles
Decides when to execute an algorithm based 
on input/output and the configured number of 
threads and event slots
When input dependencies are met, Scheduler 
pushes the algorithm into an Intel TBB queue

AthenaMT design encompassed the HLT 
requirements from the beginning, e.g. support 
for partial event data processing

Both inter-event and intra-event concurrency

Taking the opportunity of AthenaMT migration to rewrite the HLT framework

Run-2 HLT framework used a dedicated top-level algorithm taking care of algorithm scheduling

HLT in AthenaMT is closer to the offline reconstruction framework – using the Gaudi Scheduler and 
removing the trigger-specific layer allows to use offline algorithms directly in HLT without wrappers

Processing of partial event data (regional reconstruction) integrated in Gaudi as Event Views – 
algorithms can use partial or full data as input without any modification

HLT Control Flow configures an execution graph including Event Views preparation (Input Maker) and 
early termination of an execution path if trigger not accepted (Filter Step)

Each HLT chain corresponds to an execution path through the CF graph

HLT software is used both online and offline (data 
reprocessing, simulation)

Online processing requires a dedicated layer of 
communication to the TDAQ System, but the event 
processing remains unchanged w.r.t. offline

ATLAS software upgrade needs to be fully finished in 
time for LHC Run 3 starting in 2021

HLTPU structure in Run 3 will consist of the 
same applications as in Run 2, but the data 
flow within the HLTPU will change

Keep using multi-process approach, but now 
each fork has an athena instance which can run 
multiple threads

Large flexibility for optimising performance of 
the system – adjust number of forks, threads, 
event slots
In Run 2, HLTMPPU steered the event loop, 
requesting events from DCM and executing 
athena for each event sequentially

In Run 3, Athena will actively request events 
from DCM (via HLTMPPU) when it has free 
processing slots

e online-specific layer implements additional requirements for data-taking operation and integration 
with the TDAQ system

Reading/writing ROOT files replaced with an interface to TDAQ applications (DataCollector)

Extended error handling to prevent application exit where possible – send erroneous events to 
a special data stream ("debug stream") for later investigation and recovery into physics streams

Additional thread to monitor event processing time and interrupt timed-out events

Multi-threading brings new crash debugging challenges

Cannot determine which concurrently processed event crashed the application – send all to the debug 
stream and investigate all of them offline

More concurrent events = more good events in the debug stream in case of a crash 

Performance measurements will be needed to determine the optimal number of forks, threads and slots

Execution order depends on the machine performance – possible irreproducibility of problems

Data Collection Manager (DCM)
provide event fragments and process HLT result

HLT Run Control (HLTRC)
execute state transitions, e.g. start/stop run

InfoService (IS)
send monitoring data

Error Reporting System (ERS)
interface to central message stream

HLT Multi-Process Processing Unit (HLTMPPU)
[mother process]

initialise and fork, monitor the children

HLTMPPU
[child process]
execute event loop

athena

HLTMPPU
[child process]
execute event loop

athena

HLTMPPU
[child process]
execute event loop

athena

Data Flow Infrastructure

athena

ATLAS Final State Machine

H
LT

 P
ro

ce
ss

in
g

 U
n

it

=  Algorithms

Thread 1

Thread 2

Thread 3

Thread 4

Event 1

Event 2

Event 3

Event 4

Event 5

Event data
in memory

Inter-event
shared memory

Time

D
et

ec
to

r R
ea

do
ut

D
at

a 
Fl

ow

Muon
Calo

Pixel
SCT Other

FE FE FE

ROD ROD ROD

Readout System (ROS)

Data Collection
Network

CERN Permanent Storage

Data Logger

H
ig

h 
Le

ve
l T

rig
ge

r

Processing
Units

~40000

Level-1 Accept

 

Region of Interest
(RoI) Data

FE: Front End
FELIX: Front-End Link Interface eXchange
FTK: Fast Tracker
ROD: ReadOut Driver
ROS: Readout System

Trigger DAQ

FTK

O(100)

O(10)

Le
ve

l-1
 T

rig
ge

r

Custom
Hardware

FE

FELIX

Event Fragments

Accepted Events

HLTSV

40 MHz

100 kHz

1.5 kHz

Peak event rates
(primary physics)

O(60 TB/s)

~160 GB/s

~25 GB/s

~2 GB/s

Peak data rates
(primary physics)

Diagram based on cern.ch/go/6pFG

Hardware Level-1 Trigger 
reduces the rate to 100 kHz

Software HLT is required 
to provide further reduction 
to ~1.5 kHz

Run-2 HLT consisted of 
~40k physical cores and 
typically ran one instance 
of athena per core

Run-3 HLT infrastructure 
will remain similar to Run-2

Initial processing

Filter step 1
Muon

Filter step 1
Muon+Electron

Filter step 1
Electron/Photon

Reconstruction
Standalone muons

Hypo step 1
Muon

Reconstruction
Calorimeter clustering

Hypo step 1
Muon+Electron

Hypo step 1
Electron/Photon

Filter step 2
Muon

Filter step 2
Muon+Electron

Filter step 2
Electron

Filter step 2
Photon

Reconstruction
Fast ID tracking

Reconstruction
Combined muons

Reconstruction
Electrons

Reconstruction
Photons

Hypo step 2
Muon

Hypo step 2
Muon+Electron

Hypo step 2
Electron

Hypo step 2
Photon

Filter step 3
Muon

Filter step 3
Muon+Electron

Filter step 3
Electron

Filter step 3
Photon

Input maker
Muon RoIs

Input maker
EM RoIs

Input maker
Track RoIs

Input maker
Photon RoIs

Input maker
Muon RoIs

Input maker
EM cluster RoIs

Data dependencies
define how algorithms are scheduled

Trigger chains
correspond to different paths through the fixed control flow diagram

Filter algorithms
run at the start of each step and implement the early rejection

Reconstruction algorithms
process detector data to extract features

Hypothesis algorithms

Input maker algorithms
restrict the following reconstruction to a region of interest

execute hypothesis testing (e.g. pT > 10 GeV) for all active chains


