

Giuseppe Avolio - CERN

OUTLINE

- Automation and error management in the ATLAS Trigger and Data Acquisition (TDAQ) system
 - Why?
- Introducing a Complex Event Processing engine
 - ESPER from EsperTech
- The Central Hint and Information Processor (CHIP)
 - Data sources and collection
 - Interaction with the Run Control
 - Performance

Conclusions and outlook

WHY?

COMPLEX EVENT PROCESSING

- A set of technologies to process events and discover complex patterns among streams of events
 - Used in financial analysis, wireless sensor networks, business process management
- A cross between Data Base Management System and Rule Engines

Main characteristics

- Continuous stream processing
- Support for time/size windows, aggregation and grouping events
- SQL-like languages (streaming-SQL) often used to query data streams
 - Augmented with constructs to express event relationships (time, cause and aggregation)
 - Streams replacing tables in a continuous evaluation model

A CEP ENGINE - ESPER

Open source, Java based

 Events as Java beans, XML documents, classes or key-value pairs

Support for advanced stream analysis

- Correlation, aggregation, sliding windows, temporal patterns
- Knowledge base expressed in the Event Processing Language (EPL)
 - Rich SQL-like language to express complex queries
- Natively high-configurable multi-threaded architecture
 - Inbound and outbound thread pools, timers
- Support for historical data
 - Full control over time!
- Built-in advanced metrics

CHIP: THE CENTRAL HINT AND INFORMATION PROCESSOR

- CHIP is an "*intelligent*" application having a <u>global view</u> of the TDAQ system
 - Supervises the ATLAS data taking
 - Takes operational decisions
 - Handles abnormal conditions
 - Automates complex procedures
 - Performs advanced recoveries
- CHIP embeds the ESPER engine

TDAQ system largely deterministic \rightarrow Possible to identify "signatures" and react properly

CHIP DATA SOURCES

Typical information sources	Run Control	Process status
		Executed Commands
		Finite State Machine (FSM) status
	Application Messages	Different severities
		Reporting anomalies
		Can trigger on-demand actions
	Operational Data	LHC status
		Detector working parameters
		Run conditions and parameters
	Sustam	Enabled resources and detectors
	Configuration	Application parameters
		Application dependencies

CHIP AND THE RUN CONTROL

Applications in the Run Control (RC) are organized as a hierarchical tree

- Controllers are responsible of leaf applications
- More than 100 controllers

• CHIP is the "brain" of the RC system...

- Continuous monitoring of the state of all the applications (about <u>30000</u>)
- Detection and proper handling of any misbehaving application
- ...that, in its turn, is CHIP's "right hand"
 - Execution of commands
- Mission critical
 - Status of the RC essential for safe data taking

CHIP: RECOVERIES AND AUTOMATION

Large knowledge base

- More than <u>300</u> EPL statements
 - <u>28</u> different contexts (*i.e.*, EPL modules)
- Actions organized in <u>26</u> different categories
 - Each action executor being fully parametric
- More than <u>50</u> different types of events (streams) concurrently handled by CEP engine

- Run Control error management
- Dealing with application failures

Recovery

Core

- (Re)synchronization of detectors
- Removal and re-insertion of busy channels
- Full reconfiguration of detectors

Automation

- <u>Autopilot</u>: automatic cycling through the Run Control FSM states
- Setting ATLAS reference clock
- Moving to physics mode with stable beams
- Detector specific procedures

CHIP & EPL: AN EXAMPLE

More complex example is available in back-up slide

CHIP – PERFORMANCES

CHIP: METRICS ANALYSIS

Exploiting ESPER's built-in metrics

- Detailed information for every single rule in the knowledge base
 - Wall and CPU execution times, number of times a statement is evaluated

Real-time and historical data

- Data pushed to a time series database and made available via Grafana dashboards
- Fundamental feature to assess the state of CHIP and identify possible issues

Metrics reporting can be enabled/disabled at runtime

CONCLUSIONS & OUTLOOK

- During LHC Run 2, the use of CHIP for automation and recovery proved to be a valuable asset
 - Reduce probability of mistakes
 - Improve response time (computers are faster than humans...)

• Extensive use of CHIP during every ATLAS run

- From simple actions (like restarting a failing application) to complex automation and recovery procedures
- The introduction of a CEP engine has added flexibility and simplification to the continuous monitoring and supervision of the DAQ system
 - Extensive anomaly detection
 - Complex patterns
 - Advanced configuration

Looking forward for more advanced automation and anomaly detection for LHC Run 3

CHIP & EPL: MORE COMPLEX EXAMPLE

